Observatorio de I+D+i UPM

Memorias de investigación
Book chapters:
Hopf bifurcation and bifurcation from constant oscillations to a torus path for delayed complex Ginzburg-Landau equations
Year:2011
Research Areas
  • Equations on partial differentials,
  • Physics - Mathematical physics,
  • Physics - Complex systems
Information
Abstract
We consider the complex Ginzburg-Landau equation with feed- back control given by some delayed linear terms (possibly dependent of the past spatial average of the solution). We prove several bifurcation results by using the delay as parameter. We prove a Hopf bifurcation result for the equation without diffusion (the so-called Stuart-Landau equation) when the amplitude of the delayed term is suitably chosen. The diffusion case is considered first in the case of the whole space and later on a bounded domain with periodicity conditions.
International
Si
978-3-642-20853-9
Book Edition
2011
Book Publishing
Springer
ISBN
978-3-642-20852-2
Series
Complexity
Book title
Modern Mathematical Tools and Techniques in Capturing Complexity
From page
57
To page
76
Participants
  • Autor: Alfonso Carlos Casal Piga (UPM)
  • Autor: Jesus Ildefonso Díaz Díaz (Depto. Matemática Aplicada, UCM)
  • Autor: Michael Stich (CAB (CSIC-INTA) y UPM)
  • Autor: Jose Manuel Vegas Montaner (Depto. Matematica Aplicada, UCM)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Modelos Matemáticos no Lineales
  • Departamento: Matemática Aplicada a la Edificación, al Medio Ambiente y al Urbanismo
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)