Observatorio de I+D+i UPM

Memorias de investigación
Reduced order adaptive models for systems of PDEs using POD
Research Areas
  • Mathematics,
  • Aeronautical engineering
In this work we propose a method to accelerate time dependent numerical solvers of systems of PDEs that require a high cost in computational time and memory. The method is based on the combined use of such numerical solver with a proper orthogonal decomposition, from which we identify modes, a Galerkin projection (that provides a reduced system of equations) and the integration of the reduced system, studying the evolution of the modal amplitudes. We integrate the reduced model until our a priori error estimator indicates that our approximation in not accurate. At this point we use again our original numerical code in a short time interval to adapt the POD manifold and continue then with the integration of the reduced model. Application will be made to two model problems: the Ginzburg-Landau equation in transient chaos conditions and the two-dimensional pulsating cavity problem, which describes the motion of liquid in a box whose upper wall is moving back and forth in a quasi-periodic fashion. Finally, we will discuss a way of improving the performance of the method using experimental data or information from numerical simulations
Universidad de Sevilla
Entity Nationality
Sevilla (España)
  • Autor: Maria Luisa Rapun Banzo (UPM)
  • Autor: Filippo Terragni . (UPM)
  • Autor: Jose Manuel Vega De Prada (UPM)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Dinámica y estabilidad no lineal en ingeniería aeroespacial
  • Departamento: Fundamentos Matemáticos de la Tecnología Aeronáutica
S2i 2019 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)