Observatorio de I+D+i UPM

Memorias de investigación
Research Publications in journals:
TRANSPOSE RETURN RELATION METHOD FOR DESIGNING LOW NOISE OSCILLATORS
Year:2012
Research Areas
  • Electronic technology and of the communications
Information
Abstract
In this paper, a new linear method for optimizing compact low noise oscillators for RF/MW applications will be presented. The first part of this paper makes an overview of Leeson's model. It is pointed out, and it is demonstrates that the phase noise is always the same inside the oscillator loop. It is presented a general phase noise optimization method for reference plane oscillators. The new method uses Transpose Return Relations (RRT ) as true loop gain functions for obtaining the optimum values of the elements of the oscillator, whatever scheme it has. With this method, oscillator topologies that have been designed and optimized using negative resistance, negative conductance or reflection coefficient methods, until now, can be studied like a loop gain method. Subsequently, the main disadvantage of Leeson's model is overcome, and now it is not only valid for loop gain methods, but it is valid for any oscillator topology. The last section of this paper lists the steps to be performed to use this method for proper phase noise optimization during the linear design process and before the final non-linear optimization. The power of the proposed RRT method is shown with its use for optimizing a common oscillator, which is later simulated using Harmonic Balance (HB) and manufactured. Then, the comparison of the linear, HB and measurements of the phase noise are compared.
International
Si
JCR
Si
Title
Progress In Electromagnetics Research
ISBN
1070-4698
Impact factor JCR
Impact info
Volume
127
Journal number
From page
297
To page
318
Month
SIN MES
Ranking
Participants
  • Autor: Jose Luis Jimenez Martin (UPM)
  • Autor: Vicente Gonzalez Posadas (UPM)
  • Autor: Angel Parra Cerrada (UPM)
  • Autor: Alvaro Blanco Campo (UPM)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: DIEMAG: Desarrollo e Investigación Electromagnética
  • Departamento: Ingeniería Audiovisual y Comunicaciones
  • Departamento: Física Aplicada a las Tecnologías de la Información
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)