Observatorio de I+D+i UPM

Memorias de investigación
Capítulo de libro:
Asymptotically Optimal Estimators for Chaotic Digital Communications
Áreas de investigación
  • Dinámica no lineal,
  • Inferencia paramétrica,
  • Transmisión de datos,
  • Codificación
Chaotic signals and systems offer the potential of increased security in digital communications. However, most of the proposed approaches either lack robustness at low signal-to-noise ratios (SNRs) (due to the difficulty of synchronizing chaotic signals) or provide a much worse performance than classical techniques based on sinusoidal carrier functions. In this chapter we show how asymptotically optimal estimators, developed for the estimation of chaotic signals generated by discrete chaotic maps and corrupted by additive white Gaussian noise (AWGN), can be applied to improve the performance of digital chaotic communication schemes. First of all, after a brief review of discrete time chaotic maps and sequences, we derive the optimal maximum likelihood (ML) estimator for this problem. Unfortunately, its computational cost grows exponentially with the length of the chaotic sequence, thus rendering it unfeasible for moderate/large sequences. Therefore, asymptotically optimal estimators, based on well-known signal processing techniques, such as censoring approaches or the Viterbi algorithm (VA), with a reduced computational cost, are developed. Finally, we show how these methods can be applied to improve the performance of digital chaotic communications schemes based on the iteration of discrete-time chaotic maps, focusing on a recently proposed symbolic coding technique based on backward iteration.
Edición del Libro
Editorial del Libro
CRC Press
Título del Libro
Chaotic Signals in Digital Communications
Desde página
Hasta página
Esta actividad pertenece a memorias de investigación
  • Autor: David Luengo Garcia (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Ingeniería de Circuitos y Sistemas
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)