Observatorio de I+D+i UPM

Memorias de investigación
Research Publications in journals:
Disparate connectivity for structural and functional networks is revealed when physical location of the connected nodes is considered.
Year:2014
Research Areas
  • Image processing
Information
Abstract
Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical con- nections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 dif- ferent brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very- large-scale integration circuits analyses, shows that func- tional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrange- ments for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal?ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organi- zations that can only be identified when the physical locations of the nodes are included in the analysis.
International
Si
JCR
Si
Title
Brain Topography
ISBN
0896-0267
Impact factor JCR
2,519
Impact info
Volume
10.1007/s10548-014-0393-3
Journal number
From page
1
To page
10
Month
SIN MES
Ranking
Participants
  • Autor: Jose Angel Pineda Pardo (UPM)
  • Autor: Kenia Martínez (Universidad Autónoma de Madrid)
  • Autor: Ana Beatriz Solana Sanchez (UPM)
  • Autor: Juan Antonio Hernández Tamames (UPM)
  • Autor: Roberto Colom (Universidad Autonoma de Madrid)
  • Autor: Francisco del Pozo Guerrero (UPM)
Research Group, Departaments and Institutes related
  • Creador: Centro o Instituto I+D+i: Centro de tecnología Biomédica CTB
  • Departamento: Tecnología Fotónica y Bioingeniería
S2i 2019 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)