Observatorio de I+D+i UPM

Memorias de investigación
Communications at congresses:
3D simulation of complex shading affecting PV systems taking benefit from the power of graphics cards developed for the video game industry
Year:2014
Research Areas
  • Electronic technology and of the communications
Information
Abstract
Shading reduces the power output of a photovoltaic (PV) system. The design engineering of PV systems requires modeling and evaluating shading losses. Some PV systems are affected by complex shading scenes whose resulting PV energy losses are very difficult to evaluate with current modeling tools. Several specialized PV design and simulation software include the possibility to evaluate shading losses. They generally possess a Graphical User Interface (GUI) through which the user can draw a 3D shading scene, and then evaluate its corresponding PV energy losses. The complexity of the objects that these tools can handle is relatively limited. We have created a software solution, 3DPV, which allows evaluating the energy losses induced by complex 3D scenes on PV generators. The 3D objects can be imported from specialized 3D modeling software or from a 3D object library. The shadows cast by this 3D scene on the PV generator are then directly evaluated from the Graphics Processing Unit (GPU). Thanks to the recent development of GPUs for the video game industry, the shadows can be evaluated with a very high spatial resolution that reaches well beyond the PV cell level, in very short calculation times. A PV simulation model then translates the geometrical shading into PV energy output losses. 3DPV has been implemented using WebGL, which allows it to run directly from a Web browser, without requiring any local installation from the user. This also allows taken full benefits from the information already available from Internet, such as the 3D object libraries. This contribution describes, step by step, the method that allows 3DPV to evaluate the PV energy losses caused by complex shading. We then illustrate the results of this methodology to several application cases that are encountered in the world of PV systems design. Keywords: 3D, modeling, simulation, GPU, shading, losses, shadow mapping, solar, photovoltaic, PV, WebGL
International
Si
Congress
29th European PV Solar Energy Conference and Exhibition Ámsterdam
960
Place
Amsterdam
Reviewers
Si
ISBN/ISSN
3-936338-34-5
Start Date
22/09/2014
End Date
26/09/2014
From page
1
To page
5
Proceedings 29th European PV Solar Energy Conference and Exhibition Ámsterdam
Participants
  • Autor: Jesús Robledo
  • Autor: Jonathan Leloux . (UPM)
  • Autor: Antonio-P.Eduardo Lorenzo Pigueiras (UPM)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Sistemas Fotovoltáicos
  • Departamento: Electrónica Física
  • Centro o Instituto I+D+i: Instituto de Energía Solar
  • Departamento: Teoría de la Señal y Comunicaciones (Provisional)
S2i 2019 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)