Observatorio de I+D+i UPM

Memorias de investigación
Research Publications in journals:
Flutter Amplitude Saturation by Nonlinear Friction Forces: Reduced Model Verification
Year:2014
Research Areas
  • Applications for ingineerings and sciences,
  • Aeronautical engineering
Information
Abstract
The computation of the final, friction saturated limit cycle oscillation amplitude of an aerodynamically unstable bladed-disk in a realistic configuration is a formidable numerical task. In spite of the large numerical cost and complexity of the simulations, the output of the system is not that complex: it typically consists of an aeroelastically unstable traveling wave (TW), which oscillates at the elastic modal frequency and exhibits a modulation in a much longer time scale. This slow time modulation over the purely elastic oscillation is due to both the small aerodynamic effects and the small nonlinear friction forces. The correct computation of these two small effects is crucial to determine the final amplitude of the flutter vibration, which basically results from its balance. In this work, we apply asymptotic techniques to consistently derive, from a bladed-disk model, a reduced order model that gives only the time evolution on the slow modulation, filtering out the fast elastic oscillation. This reduced model is numerically integrated with very low computational cost, and we quantitatively compare its results with those from the bladed-disk model. The analysis of the friction saturation of the flutter instability also allows us to conclude that: (i) the final states are always nonlinearly saturated TW; (ii) depending on the initial conditions, there are several different nonlinear TWs that can end up being a final state; and (iii) the possible final TWs are only the more flutter prone ones.
International
Si
JCR
Si
Title
Journal of Turbomachinery-Transactions of the Asme
ISBN
0889-504X
Impact factor JCR
1,003
Impact info
Volume
Journal number
From page
1
To page
8
Month
SIN MES
Ranking
Participants
  • Autor: Carlos Martel Escobar (UPM)
  • Autor: Roque Corral Garcia (UPM)
  • Autor: Rahul Ivaturi . (UPM)
Research Group, Departaments and Institutes related
  • Creador: Departamento: Mecánica de Fluidos y Propulsión Aeroespacial
  • Departamento: Matemática Aplicada a la Ingeniería Aeroespacial
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)