Observatorio de I+D+i UPM

Memorias de investigación
Thesis:
New methodology for the integration of biometric features in speaker recognition systems applied to security environments
Year:2015
Research Areas
  • Information technology and adata processing
Information
Abstract
The main question addressed in this thesis is the improvement of automatic speaker recognition systems, by the introduction of a new front-end module that we have called Gender Dependent Extended Biometric Parameterisation (GDEBP). This front-end do not constitute a complete break with respect to classical parameterisation techniques used in speaker recognition but a new way to obtain these parameters while introducing some complementary ones. Specifically, we propose a gender-dependent parameterisation, since as it is well known male and female voices have different characteristic, and therefore the use of different parameters to model these distinguishing characteristics should provide a better characterisation of speakers. Additionally, we propose the introduction of a new set of biometric parameters extracted from the components which result from the deconstruction of the voice into its glottal source estimate (close related to the phonation process and the involved organs, and therefore the physical characteristics of the speaker) and vocal tract estimate (close related to acoustic articulation and therefore to the spoken message). These biometric parameters constitute a complement to the classical MFCC extracted from the power spectral density of speech as a whole. In order to check the validity of this proposal we establish different practical scenarios, using different databases, so we can conclude that a GDEBP generates a more accurate description of speakers than classical approaches based on gender-independent MFCC. Specifically, we propose scenarios based on text-constrain and text-independent test using HESPERIA and ALBAYZIN databases. This work is also completed with the participation in two international speaker recognition evaluations: NIST SRE (2010 and 2012) and MOBIO 2013, with diverse results. In the first case, due to the nature of the NIST databases, we obtain results closed to state-of-the-art although confirming our hypothesis, whereas in the MOBIO SRE we obtain the best simple system performance for female speakers. Although the study of classification systems is beyond the scope of this thesis, we found it necessary to analise the performance of different classification systems, in order to verify the effect of them on the propose parameterisation. In particular, we have addressed the use of speaker recognition systems based on the GMM-UBM paradigm, supervectors and i-vectors. The presented results confirm that the selection of a set of parameters that allows for a more accurate description of the speakers is as important as the selection of the classification method used by the biometric system. In this sense, the proposed parameterisation constitutes a step forward in improving speaker recognition systems, since even when using relatively simple classification systems, really competitive recognition rates are achieved.
International
Si
Type
Doctoral
Mark Rating
Sobresaliente
Date
14/11/2014
Participants
  • Director: Agustin Alvarez Marquina (UPM)
  • Autor: Luis Miguel Mazaira Fernandez (Universidad Politecnica de Madrid)
Research Group, Departaments and Institutes related
  • Creador: Centro o Instituto I+D+i: Centro de tecnología Biomédica CTB
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)