Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Enhancing deep learning sentiment analysis with ensemble techniques in social applications
Año:2016
Áreas de investigación
  • Inteligencia artificial (redes neuronales, lógica borrosa, sistemas expertos, etc)
Datos
Descripción
Deep learning techniques for Sentiment Analysis have become very popular. They provide automatic feature extraction and both richer representation capabilities and better performance than traditional feature based techniques (i.e., surface methods). Traditional surface approaches are based on complex manually extracted features, and this extraction process is a fundamental question in feature driven methods. These long-established approaches can yield strong baselines, and their predictive capabilities can be used in conjunction with the arising deep learning methods. In this paper we seek to improve the performance of deep learning techniques integrating them with traditional surface approaches based on manually extracted features. The contributions of this paper are sixfold. First, we develop a deep learning based sentiment classifier using a word embeddings model and a linear machine learning algorithm. This classifier serves as a baseline to compare to subsequent results. Second, we propose two ensemble techniques which aggregate our baseline classifier with other surface classifiers widely used in Sentiment Analysis. Third, we also propose two models for combining both surface and deep features to merge information from several sources. Fourth, we introduce a taxonomy for classifying the different models found in the literature, as well as the ones we propose. Fifth, we conduct several experiments to compare the performance of these models with the deep learning baseline. For this, we use seven public datasets that were extracted from the microblogging and movie reviews domain. Finally, as a result, a statistical study confirms that the performance of these proposed models surpasses that of our original baseline on F1-Score.
Internacional
Si
JCR del ISI
Si
Título de la revista
Expert Systems With Applications
ISSN
0957-4174
Factor de impacto JCR
1,965
Información de impacto
Datos JCR del año 2013
Volumen
DOI
10.1016/j.eswa.2017.02.002
Número de revista
Desde la página
236
Hasta la página
246
Mes
JULIO
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Oscar Araque Iborra (UPM)
  • Autor: Juan Fernando Sanchez Rada (UPM)
  • Autor: Carlos Angel Iglesias Fernandez (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de Sistemas Inteligentes
  • Departamento: Ingeniería de Sistemas Telemáticos
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)