Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Mining the Opinionated Web: Classification and Detection of Aspect Contexts for Aspect Based Sentiment Analysis
Año:2016
Áreas de investigación
  • Inteligencia artificial (redes neuronales, lógica borrosa, sistemas expertos, etc)
Datos
Descripción
spect Based Sentiment Analysis (ABSA) provides further insight into the analysis of social media. Understanding user opinion about different aspects of products, services or policies can be used for improving and innovating in an effective way. Thus, it is becoming an increasingly important task in the Natural Language Processing (NLP) realm. The standard pipeline of aspect-based sentiment analysis consists of three phases: aspect category detection, Opinion Target Extraction (OTE) and sentiment polarity classification. In this article, we propose an alternative pipeline: OTE, aspect classification, aspect context detection and sentiment classification. As it can be observed, the opinionated words are first detected and then are classified into aspects. In addition, the opinionated fragment of every aspect is delimited before performing the sentiment analysis. This paper is focused on the aspect classification and aspect context detection phases and proposes a twofold contribution. First, we propose a hybrid model consisting of a word embeddings model used in conjunction with semantic similarity measures in order to develop an aspect classifier module. Second, we extend the context detec- tion algorithm by Mukherjee et al. to improve its performance. The system has been evaluated using the SemEval2016 datasets. The evaluation shows through several experiments that the use of hybrid techniques that aggregate different sources of information improves the classification performance.
Internacional
Si
Nombre congreso
SENTIRE 2016
Tipo de participación
960
Lugar del congreso
Barcelona
Revisores
Si
ISBN o ISSN
2375-9259
DOI
10.1109/ICDMW.2016.0132
Fecha inicio congreso
12/12/2016
Fecha fin congreso
15/12/2016
Desde la página
900
Hasta la página
807
Título de las actas
Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Oscar Araque Iborra (UPM)
  • Autor: Ganggao Zhu . (UPM)
  • Autor: Carlos Angel Iglesias Fernandez (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de Sistemas Inteligentes
  • Departamento: Ingeniería de Sistemas Telemáticos
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)