Observatorio de I+D+i UPM

Memorias de investigación
Thesis:
Numerical Modeling of Heat Transfer Phenomena during Quenching of Steel
Year:2016
Research Areas
  • Aeronautical engineering
Information
Abstract
In this thesis, the heat transfer phenomena that take place during the industrial process of quenching are studied and modeled. This work incorporates into the modeling scheme of quenching the dynamics of the quenching bath, specially, the resolution of the flow near the treated piece and the thermal interaction of the fluid with the piece. Due to the high initial temperatures involved during the process, a multiphase liquid/vapor flow has to be taken into consideration. The vaporization of the fluid is incorporated in the heat transfer mechanisms and in the fluid dynamics of the flow. To describe the cooling of the piece, the thermal problem of the solid has to be solved coupled along the evolution of the multiphase flow. This approach requires the resolution of a much more complex problem than the heat equation of a solid. The increased complexity of the pursued approach affects the modeling, implementation and numerical aspects of the simulation. In order to select the most convenient multiphase flow model, the analysis of characteristic times, couplings between phases and nondimensional numbers, was performed. The model that retains all the relevant dynamics of the problem at an affordable numerical and modeling cost, is the drift-flux mixture model. For this model, the multiphase flow is treated as a mixture of both phases with a kinematic relationship to describe the relative velocities between phases. In addition to the multiphase approach to describe the bath dynamics, a heat partition model is proposed to incorporate all the different heat transfer mechanisms. The model is set up based on different models independently generated. In this work, a variety of models are combined to describe the heat transfer from the very high temperature conditions (film boiling) up to single phase convection. The heat transfer models were adapted and/or fitted to be applied for oil as quenching liquid. To calibrate the models, a set of physical experiments over a standard probe was performed. The cooling rates and total heat fluxes were obtained from the tests, and based on these results, the heat transfer models were calibrated. To obtain the cooling rate curves from the rather scattered experimental measures, a non-linear diffusion filter was implemented. The use of this type of filter is a novel application for this type of problems and the obtained results are smoother than the ones obtained by current techniques. The total heat flux was obtained from the resolution of the inverse heat transfer problem for the standard tests. The inverse problem was solved by the iterative resolution of the direct problem with a correction function obtained from the comparison of the experimental and numerical cooling rate curves. The cost function of the inverse problem is based on the error of the cooling rate curves instead of temperature records. The iterative method to solve the inverse heat transfer problem and the use of the error of the cooling rate as cost function are two novel methods developed in this work. Once the experimental total heat flux was obtained for the set of tested conditions, the calibration of the heat transfer model was performed. The models for each mechanism and the blending functions responsible to generate transitions between them were fitted based on nominal values of the flow. This calibration gave place to a set of correlations sensitive to nominal (non local) conditions of quenching (mainly oil temperature and velocity), therefore any condition among the tests can be interpolated from these results. The model was setup for a given oil. For the standard tests performed over a vertical cylinder, the comparison between the numerical and experimental results is very satisfactory. The heat partition model was adapted to be sensitive to local values of the flow, in addition to the vapor fraction that surrounds the piece, being this feature a novel approach in this type of model.
International
No
Type
Doctoral
Mark Rating
Apto cum laude
Date
15/01/2016
Participants
  • Autor: Diego Nicolas Passarella (Universidad de Vigo)
  • Director: Fernando Varas Merida (UPM)
  • Director: Elena Beatriz Martín Ortega (Universidad de Vigo)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Dinámica y estabilidad no lineal en ingeniería aeroespacial
  • Departamento: Matemática Aplicada a la Ingeniería Aeroespacial
S2i 2019 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)