Memorias de investigación
Artículos en revistas:
Differential modulation of plant immune responses by diverse 2 members of the Pseudomonas savastanoi pv. savastanoi HopAF 3 type III effector family
Año:2016

Áreas de investigación
  • Biología molecular, celular y genética,
  • Agricultura

Datos
Descripción
The Pseudomonas savastanoi pv. savastanoi NCPPB 3335 type III secretion system (T3SS) effector repertoire includes 33 candidates, seven of which translocate into host cells and interfere with plant defences. The present study was performed to investigate the co-existence of both plasmid- and chromosomalencoded members of the HopAF effector family, HopAF1-1 and HopAF1-2, respectively, in the genome of NCPPB 3335. Here, we show that the HopAF1 paralogues are widely distributed in the Pseudomonas syringae complex, where HopAF1-1 is most similar to the homologues encoded by other P. syringae pathovars infecting woody hosts that belong to phylogroups 1 and 3. We show that the expression of both HopAF1-1 and HopAF-2 is transcriptionally dependent on HrpL and demonstrate their delivery into Nicotiana tabacum leaves. Although the heterologous delivery of either HopAF1-1 or HopAF1-2 significantly suppressed the production of defence-associated reactive oxygen species levels, only HopAF1-2 reduced the levels of callose deposition. Moreover, the expression of HopAF1-2 by functionally effectorless P. syringae pv. tomato DC3000D28E completely inhibited the hypersensitive response in tobacco and significantly increased the competitiveness of the strain in Nicotiana benthamiana. Despite their functional differences, subcellular localization studies reveal that green fluorescent protein (GFP) fusions to either HopAF1-1 or HopAF1-2 are targeted to the plasma membrane when they are expressed in plant cells, a process that is completely dependent on the integrity of their N-myristoylation motif. Our results further support the notion that highly similar T3SS effectors might differentially interact with diverse plant targets, even when they co-localize in the same cell compartment.
Internacional
Si
JCR del ISI
Si
Título de la revista
Molecular Plant Pathology
ISSN
1464-6722
Factor de impacto JCR
4,335
Información de impacto
Volumen
DOI
10.1111/mpp.12420
Número de revista
on-line
Desde la página
on -line
Hasta la página
on-line
Mes
SIN MES
Ranking
D1 (16/209 Plant Sciences)

Esta actividad pertenece a memorias de investigación

Participantes

Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Interacciones Moleculares Planta-Patógeno
  • Departamento: Biotecnología - Biología Vegetal