Memorias de investigación
Ponencias en congresos:
Breakup criterion for droplets in the vicinity of a leading edge of an airfoil
Año:2017

Áreas de investigación
  • Ingeniería aeronaútica

Datos
Descripción
A new breakup criterion is proposed in this article for droplets that suffers the flow field generated by an incoming airfoil. This criterion is based on the study of the characteristic times involved in the problem, which are the characteristic flow field variation time and the characteristic droplet deformation time. An empirical correlation is given to determine the Weber number at the onset of the breakup for each flow field and droplet size. Experimental data on the droplet deformation and breakup tests conducted in a rotating arm facility was used for the correlation. Droplets, in the range of 0.3 to 3.6 mm of diameter, were allowed to fall in the path of an incoming airfoil attached to the end of a rotating arm. Airfoil velocities varied between 50 m/s and 90 m/s while its leading edge radius ranged from 0.030 to 0.103 m. The phenomenon was recorded by a high speed camera using shadowgraph illumination technique. The empirical correlation was obtained from droplets that breakup in the bag and stamen breakup mode. However the same correlation seems to be valid for droplets in the regime of shear breakup and for droplets in the regime of bag breakup.
Internacional
Si
Nombre congreso
9th AIAA Atmospheric and Space Enviroments Conference, 2017 AIAA Aviation and Aeronautics Forum and Exposition
Tipo de participación
960
Lugar del congreso
Denver, Colorado, EE UU
Revisores
Si
ISBN o ISSN
978-1-62410-496-1
DOI
https://doi.org/10.2514/6.2017-4479
Fecha inicio congreso
05/06/2017
Fecha fin congreso
09/06/2017
Desde la página
1
Hasta la página
15
Título de las actas
9th AIAA Atmospheric and Space Environments Conference, AIAA AVIATION Forum

Esta actividad pertenece a memorias de investigación

Participantes

Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Sistemas y Microsistemas Termofluidodinámicos
  • Departamento: Mecánica de Fluidos y Propulsión Aeroespacial