Observatorio de I+D+i UPM

Memorias de investigación
Other publications:
High order recurrence relation, Hermite-Padé approximation, and Nikishin systems
Year:2016
Research Areas
  • Approximation theory,
  • Functional analysis
Information
Abstract
The study of sequences of polynomials satisfying high order recurrence relations is connected with the asymptotic behavior of multiple orthogonal polynomials, the convergence properties of type II Hermite-Pad¿e approximation, and eigenvalue distribution of banded Toeplitz matrices. We present some results for the case of recurrences with constant coefficients which match what is known for the Chebyshev polynomials of the first kind. In particular, under appropriate assumptions, we show that the sequence of polynomials satisfies multiple orthogonality relations with respect to a Nikishin system of measures.
International
Si
Entity
Place
Pages
Reference/URL
https://arxiv.org/abs/1604.07772
Publication type
Manuscrito en base de datos
Participants
  • Autor: Maria Dolores Barrios Rolania (UPM)
  • Autor: J.S. Geronimo (Georgia Institute of Technology, Atlanta, EEUU)
  • Autor: G. López Lagomasino (Universidad Carlos III de Madrid)
Research Group, Departaments and Institutes related
  • Creador: Departamento: Ingeniería Civil: Hidráulica y Ordenación del Territorio
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)