Observatorio de I+D+i UPM

Memorias de investigación
Communications at congresses:
Automatic detection of surgical instruments? state in laparoscopic video images using neural networks
Year:2017
Research Areas
  • Engineering
Information
Abstract
Software-based solutions such as virtual reality simulators and serious games can be useful assets for training minimally invasive surgery technical skills. However, their high cost and lack of realism/fidelity can sometimes be a drawback for their incorporation in training facilities. In this sense, the hardware interface plays an important role as the physical connection between the learner and the virtual world. The EVA Tracking System, provides computer vision-based information about the position and the orientation of the instruments in an expensive and unobtrusive manner, but lacks information about the aperture state of the clamps, which limits the system¿s functionalities. This article presents a new solution for instrument¿s aperture state detection using artificial vision and machine learning techniques. To achieve this goal, videos in a laparoscopic training box are recorded to obtain a data set. In each frame, the instrument clamp is segmented in a region of interest by means of color markers. The classifier is modeled using an Artificial Neural Network. The trained prediction model obtains accuracy results of 94% in the validation dataset and an error of 6% in independent evaluation video sequences. Results show that the model provides a competent solution to clamp¿s aperture state detection. Future works will address the integration of the model into the EVA and a virtual environment, the KTS serious game.
International
No
Congress
XXXV Congreso Anual de la Sociedad Espa?nola de Ingenier¿?a Biom¿edica
960
Place
BILBAO ESPAÑA
Reviewers
Si
ISBN/ISSN
978-84-9082-797-0
Start Date
29/11/2017
End Date
01/12/2017
From page
293
To page
296
Libro de Actas. XXXV Congreso Anual de la Sociedad Espa?nola de Ingenier¿?a Biom¿edica
Participants
  • Autor: Enrique Javier Gomez Aguilera (UPM)
  • Autor: Patricia Sanchez Gonzalez (UPM)
  • Autor: Francisco Sáchez Margallo (UPM)
  • Autor: Ignacio Oropesa García (UPM)
  • Autor: Juan Alberto Sánchez Margallo (Centro cirugía de Mínima Invasión)
  • Autor: C. MARTÍN VICARIO (Grupo de Bioingeniería y Telemedicina)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Grupo de Bioingeniería y Telemedicina
  • Centro o Instituto I+D+i: Centro de tecnología Biomédica CTB
  • Departamento: Tecnología Fotónica y Bioingeniería
S2i 2019 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)