Observatorio de I+D+i UPM

Memorias de investigación
Research Publications in journals:
Local projection stabilized Lagrange-Galerkin methods for Navier-Stokes equations at high Reynolds numbers
Year:2018
Research Areas
  • Physics chemical and mathematical
Information
Abstract
In this article we review recent developments in the analysis and applications of local projection stabilized (LPS) Lagrange-Galerkin (LG) methods to integrate convection dominated-diffusion problems and Navier-Stokes equations at high Reynolds numbers. LG methods combine a discrete Galerkin projection method, usually finite elements, with a backward in time discretization of the convection terms along the characteristic curves. The main advantage of this approach is that provides a natural upwinding to the space discretization of the equations and transform the convection?diffusion problem into an elliptic one (or a Stokes problem in the case of Navier?Stokes equations); however, despite this upwinding introduced by the discretization of the material derivative, LG methods need to be further stabilized. The LPS technique is well suited to stabilize LG methods for the following reasons: (1) it is symmetric and does not break up the symmetry of the discrete system obtained by the backward in time discretization of the material derivative; (2) it is flexible in the sense that can be used with any conventional time marching scheme, and (3) is relatively easy to incorporate in any conventional LG code. In this article, we summarize the last theoretical results concerning the convergence and stability properties when LPS-LG methods are applied with time marching schemes of first and second order.
International
Si
JCR
No
Title
SeMA Journal
ISBN
2281-7875
Impact factor JCR
Impact info
Volume
10.1007/s40324-018-0155-3
Journal number
From page
1
To page
21
Month
SIN MES
Ranking
Participants
  • Autor: Rodolfo Bermejo Bermejo (UPM)
  • Autor: Laura Saavedra Lago (UPM)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Análisis y experimentación en mecánica de fluidos y combustión
  • Departamento: Matemáticas del Área Industrial
  • Departamento: Matemática Aplicada a la Ingeniería Aeroespacial
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)