Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
How to Build a Functional Connectomic Biomarker for Mild Cognitive Impairment from Source Reconstructed MEG Resting-State Activity: The Combination of ROI Representation and Connectivity Estimator Matters
Año:2018
Áreas de investigación
  • Neurociencia cognitiva
Datos
Descripción
Our work aimed to demonstrate the combination of machine learning and graph theory for the designing of a connectomic biomarker for mild cognitive impairment (MCI) subjects using eyes-closed neuromagnetic recordings. The whole analysis based on source-reconstructed neuromagnetic activity. As ROI representation, we employed the principal component analysis (PCA) and centroid approaches. As representative bi-variate connectivity estimators for the estimation of intra and cross-frequency interactions, we adopted the phase locking value (PLV), the imaginary part (iPLV) and the correlation of the envelope (CorrEnv). Both intra and cross-frequency interactions (CFC) have been estimated with the three connectivity estimators within the seven frequency bands (intra-frequency) and in pairs (CFC), correspondingly. We demonstrated how different versions of functional connectivity graphs single-layer (SL-FCG) and multi-layer (ML-FCG) can give us a different view of the functional interactions across the brain areas. Finally, we applied machine learning techniques with main scope to build a reliable connectomic biomarker by analyzing both SL-FCG and ML-FCG in two different options: as a whole unit using a tensorial extraction algorithm and as single pair-wise coupling estimations. We concluded that edge-weighed feature selection strategy outperformed the tensorial treatment of SL-FCG and ML-FCG. The highest classification performance was obtained with the centroid ROI representation and edge-weighted analysis of the SL-FCG reaching the 98% for the CorrEnv in ?1:?2 and 94% for the iPLV in ?2. Classification performance based on the multi-layer participation coefficient, a multiplexity index reached 52% for iPLV and 52% for CorrEnv. Selected functional connections that build the multivariate connectomic biomarker in the edge-weighted scenario are located in default-mode, fronto-parietal and cingulo-opercular network. Our analysis supports the notion of analysing FCG simultaneously in intra and cross-frequency whole brain interactions with various connectivity estimators in beamformed recordings.
Internacional
Si
JCR del ISI
Si
Título de la revista
Frontiers in Neuroscience
ISSN
1662-453X
Factor de impacto JCR
3,566
Información de impacto
Datos JCR del año 2016
Volumen
2018
DOI
10.3389/fnins.2018.00306
Número de revista
Desde la página
306
Hasta la página
306
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Stavros Drimitriadis
  • Autor: Ricardo Bruña Fernandez (UPM)
  • Autor: Pablo Cuesta Prieto (UPM)
  • Autor: Alberto Marcos
  • Autor: Fernando Maestu Unturbe (UPM)
  • Autor: Ernesto Pereda De Pablos (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Tecnologías para Ciencias de la Salud
  • Centro o Instituto I+D+i: Centro de tecnología Biomédica CTB
S2i 2022 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)