Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Analysis of air traffic control operational impact on aircraft vertical profiles supported by machine learning
Año:2018
Áreas de investigación
  • Transporte aéreo,
  • Aviación civil,
  • Circulación aérea
Datos
Descripción
The Air Tra?c Management system is under a paradigm shift led by NextGen and SESAR. The new trajectory-based Concept of Operations is supported by performance-based trajectory predictors as major enablers. Currently, the performance of ground-based trajectory predictors is a?ected by diverse factors such as weather, lack of integration of operational information or aircraft performance uncertainty.Trajectory predictors could be enhanced by learning from historical data. Nowadays, data from the Air Tra?c Management system may be exploited to understand to what extent AirTra?c Control actions impact on the vertical pro?le of ?ight trajectories.This paper analyses the impact of diverse operational factors on the vertical pro?le of ?ight trajectories. Firstly, Multilevel Linear Models are adopted to conduct a prior identi?cation of these factors. Then, the information is exploited by trajectory predictors, where two types are used: point-mass trajectory predictors enhanced by learning the thrust law depending on those factors; and trajectory predictors based on Arti?cial Neural Networks.Air Tra?c Control vertical operational procedures do not constitute a main factor impacting on the vertical pro?le of ?ight trajectories, once the top of descent is established. Additionally,airspace ?ows and the ?ight level at the trajectory top of descent are relevant features to be considered when learning from historical data, enhancing the overall performance of the trajectory predictors for the descent phase.
Internacional
Si
JCR del ISI
Si
Título de la revista
Transportation Research Part C: Emerging Technologies
ISSN
0968-090X
Factor de impacto JCR
3,968
Información de impacto
JIF 2017
Volumen
95
DOI
10.1016/j.trc.2018.03.017
Número de revista
Desde la página
883
Hasta la página
903
Mes
OCTUBRE
Ranking
Q1 6/35 Transportation Science & Technology
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Cristian Eduardo Verdonk Gallego (UPM)
  • Autor: Victor Fernando Gomez Comendador (UPM)
  • Autor: Fco. Javier Saez Nieto (UPM)
  • Autor: Guillermo Orenga Imaz (CRIDA A.I.E.)
  • Autor: Rosa Maria Arnaldo Valdes (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Navegación Aérea
  • Departamento: Sistemas Aeroespaciales, Transporte Aéreo y Aeropuertos
S2i 2022 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)