Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Quantitative Analysis of Relationship Between Hypokinetic Dysarthria and the Freezing of Gait in Parkinson's Disease
Año:2018
Áreas de investigación
  • Bioinstrumentación
Datos
Descripción
Hypokinetic dysarthria (HD) and freezing of gait (FOG) are both axial symptoms that occur in patients with Parkinson's disease (PD). It is assumed they have some common pathophysiological mechanisms and therefore that speech disorders in PD can predict FOG deficits within the horizon of some years. The aim of this study is to employ a complex quantitative analysis of the phonation, articulation and prosody in PD patients in order to identify the relationship between HD and FOG, and establish a mathematical model that would predict FOG deficits using acoustic analysis at baseline. We enrolled 75 PD patients who were assessed by 6 clinical scales including the Freezing of Gait Questionnaire (FOG?Q). We subsequently extracted 19 acoustic measures quantifying speech disorders in the fields of phonation, articulation and prosody. To identify the relationship between HD and FOG, we performed a partial correlation analysis. Finally, based on the selected acoustic measures, we trained regression models to predict the change in FOG during a 2-year follow-up. We identified significant correlations between FOG?Q scores and the acoustic measures based on formant frequencies (quantifying the movement of the tongue and jaw) and speech rate. Using the regression models, we were able to predict a change in particular FOG?Q scores with an error of between 7.4 and 17.0 %. This study is suggesting that FOG in patients with PD is mainly linked to improper articulation, a disturbed speech rate and to intelligibility. We have also proved that the acoustic analysis of HD at the baseline can be used as a predictor of the FOG deficit during 2 years of follow-up. This knowledge enables researchers to introduce new cognitive systems that predict gait difficulties in PD patients.
Internacional
Si
JCR del ISI
Si
Título de la revista
Cognitive Computation
ISSN
1866-9956
Factor de impacto JCR
3,479
Información de impacto
Volumen
DOI
10.1007/s12559-018-9575-8
Número de revista
Desde la página
1
Hasta la página
13
Mes
SIN MES
Ranking
Q1 24/132 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Jiri Mekyska (Technical University of Brno)
  • Autor: Zoltan Galaz (Technical University of Brno)
  • Autor: Tomasz Kiska (Technical University of Brno)
  • Autor: Vojtech Zvoncak (Technical University of Brno)
  • Autor: Jan Mucha (Technical University of Brno)
  • Autor: Zdenek Smekal (Technical University of Brno)
  • Autor: Ilona Eliasova (St. Anne's University Hospital Brno)
  • Autor: Milena Kostalova (Faculty Hospital Masaryk University)
  • Autor: Martina Mrackova (Masaryk University)
  • Autor: Dagmar Fiedorova (Masaryk University)
  • Autor: Marcos Faúndez (Escola Superior Politecnica Mataró)
  • Autor: Jordi Solè (University of Vic)
  • Autor: Pedro Gomez Vilda (UPM)
  • Autor: Irena Rektorova (St. Anne's University Hospital Brno)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Informática Aplicada al Procesado de Señal e Imagen
  • Centro o Instituto I+D+i: Centro de tecnología Biomédica CTB
  • Departamento: Arquitectura y Tecnología de Sistemas Informáticos
S2i 2022 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)