Observatorio de I+D+i UPM

Memorias de investigación
Conferences:
Ultra-compact multichannel freeform optics for 4xWUXGA OLED microdisplays.
Year:2018
Research Areas
  • Engineering
Information
Abstract
We present an advanced optical design for a high-resolution ultra-compact VR headset for high-end applications based on multichannel freeform optics and 4 OLED WUXGA microdisplays developed under EU project LOMID. Conventional optical systems in VR headsets require large distance between lenses and displays that directly leads to the rather bulky and heavy commercial headsets we have at present. We managed to dramatically decrease the required display size itself and the display to eye distance, making it only 36 mm (to be compared to 60-75 mm in most conventional headsets). This ultra-compact optics allows reducing the headset weight and it occupies about a fourth of volume of a conventional headset with the same FOV. Additionally, our multichannel freeform optics provides an excellent image quality and a large field of view (FOV) leading to highly immersive experience. Unlike conventional microlens arrays, which are also multichannel devices, our design uses freeform optical surfaces to produce, even operating in oblique incidences, the highest optical resolution and Nyquist frequency of the VR pixels where it is needed. The LOMID microdisplays used in our headsets are large-area high-resolution (WUXGA) microdisplays with compact, high bandwidth circuitry, including special measures for high contrast by excellent blacks and low-power consumption. LOMID microdisplay diagonal is 0.98? with 16:10 aspect ratio. With two WUXGA microdisplays per eye, our headset has a total of 4,800x1,920 pixels, i.e. close to 5k. As a result, our multichannel freeform optics provides a VR resolution 24 pixels/deg and a monocular FOV of 92x75 degs (or 100x75 with a binocular superposition of 85%).
International
Si
9781510618787
Entity
Digital Optics for Immersive Displays. SPIE Photonics Europe.Proceedings Volume 10676, Digital Optics for Immersive Displays; 1067607 (2018) 
Entity Nationality
Sin nacionalidad
Place
Strasbourg, France
Participants
  • Autor: Marina Buljan (LIMBAK 4PI S.L.)
  • Autor: Bharathwaj Appan Narasimhan (UPM)
  • Autor: Pablo Benitez Gimenez (UPM)
  • Autor: Juan Carlos Miñano Dominguez (UPM)
  • Autor: Jesús López (LIMBAK 4PI S.L.)
  • Autor: Dejan Grabovi¿ki¿ (LIMBAK 4PI S.L.)
  • Autor: Milena Nikolic (UPM)
  • Autor: Eduardo Pérez
  • Autor: Jorge Gorospe
  • Autor: Eduardo Sanchez Romero (UPM)
  • Autor: Juan Carlos Gonzalez Lopez (UPM)
  • Autor: Pablo Zamora (LIMBAK 4PI S.L.)
  • Autor: Rubén Mohedano (LIMBAK 4PI S.L.)
Research Group, Departaments and Institutes related
  • Creador: Centro o Instituto I+D+i: Centro de Domótica Integral, CEDINT
  • Departamento: Electrónica Física
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)