Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
A p-multigrid strategy with anisotropic p-adaptation based on truncation errors for high-order discontinuous Galerkin methods
Áreas de investigación
  • Matemáticas,
  • Ingenierías
High-order discontinuous Galerkin methods have become a popular technique in computational fluid dynamics because their accuracy increases spectrally in smooth solutions with the order of the approximation. However, their main drawback is that increasing the order also increases the computational cost. Several techniques have been introduced in the past to reduce this cost. On the one hand, local mesh adaptation strategies based on error estimation have been proposed to reduce the number of degrees of freedom while keeping a similar accuracy. On the other hand, multigrid solvers may accelerate time marching computations for a fixed number of degrees of freedom. In this paper, we combine both methods and present a novel anisotropic p-adaptation multigrid algorithm for steady-state problems that uses the multigrid scheme both as a solver and as an anisotropic error estimator. To achieve this, we show that a recently developed anisotropic truncation error estimator [1, A. M. Rueda-Ramírez, G. Rubio, E. Ferrer, E. Valero, Truncation error estimation in the p-anisotropic discontinuous Galerkin spectral element method, J. Sci. Comput.] is perfectly suited to be performed inside the multigrid cycle with negligible extra cost. Furthermore, we introduce a multi-stage padaptation procedure which reduces the computational time when very accurate results are required. The proposed methods are tested for the compressible Navier?Stokes equations, where we investigate two steady-state cases. First, the 2D boundary layer flow on a flat plate is studied to assess accuracy and computational cost of the algorithm, where a speed-up of 816 is achieved compared to the traditional explicit method. Second, the 3D flow around a sphere is simulated and used to test the anisotropic properties of the proposed method, where a speed-up of 152 is achieved compared to the explicit method. The proposed multistage procedure achieved a speed-up of 2.6 in comparison to the single-stage method in highly accurate simulations.
Título de la revista
Journal of Computational Physics
Factor de impacto JCR
Información de impacto
Datos JCR del año 2017
Número de revista
Desde la página
Hasta la página
Esta actividad pertenece a memorias de investigación
  • Autor: Andrés Mauricio Rueda Ramírez (UPM)
  • Autor: Juan Manzanero Torrico (UPM)
  • Autor: Esteban Ferrer Vaccarezza (UPM)
  • Autor: Gonzalo Rubio Calzado (UPM)
  • Autor: Eusebio Valero Sanchez (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Métodos y Aplicaciones Numéricas a la Tecnología Aeroespacial
  • Centro o Instituto I+D+i: Centro de Investigación en Simulación Computacional
  • Departamento: Matemática Aplicada a la Ingeniería Aeroespacial
S2i 2022 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)