Observatorio de I+D+i UPM

Memorias de investigación
Capítulo de libro:
Embedding principal component analysis inference in expert sensors for big data applications
Año:2019
Áreas de investigación
  • Ingeniería eléctrica, electrónica y automática
Datos
Descripción
The increasing relevance of big data applications in fields as the Internet of Things (IoT) and Industry 4.0 implies that sensors are requested to be secure and accurate. In the last years, sensors are evolving toward complex monitoring functionalities, increasing the complexity of data, meaning that the analysis stage is usually performed away from the sensor layer, i.e., the fog or the cloud. This separation entails issues for response time and security. As a possible way to address this data analysis closer to the edge, embedded machine-learning (ML) techniques have shown to be a good solution, leading to expert sensors. Feature extraction tools, as principal component (PC) analysis (PCA), might offer a solution to reduce the amount of data transmitted through the network, adding additional security because information is not transmitted as raw data. However, PCA is time-consuming and therefore, it should be carefully optimized according to the hardware used in the sensor device. This chapter proposes to embed the PCA inference stage in a low-cost field-programmable system on chip (SoC) (FPSoC) while performing a design space exploration for a general PCA inference problem. To this end, the authors analyze metrics, such as latency, scalability, and usage of hardware resources. The resulting architectures are compared to a multicore OpenMP approach to be executed in an ARM processor, analyzing the advantages of using the FPSoC implementation in speedup.
Internacional
Si
DOI
10.1049/PBPC035G_cl
Edición del Libro
Editorial del Libro
ISBN
978-1-785-619786
Serie
Título del Libro
Big Data Recommender Systems - Volume 2: Application Paradigms
Desde página
1
Hasta página
22
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Rodrigo Mariño Andres (UPM)
  • Autor: Jose Manuel Lanza Gutierrez (UPM)
  • Autor: Teresa Riesgo Alcaide (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Electrónica Industrial
  • Centro o Instituto I+D+i: Centro de Electrónica Industrial. CEI
  • Departamento: Automática, Ingeniería Eléctrica y Electrónica e Informática Industrial
S2i 2022 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)