Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Christoffel Transformation for a Matrix of Bi-variate Measures,
Año:2019
Áreas de investigación
  • Análisis de fourier en una variable
Datos
Descripción
In this paper Geronimus transformations for matrix orthogonal polynomials in the real line are studied. The orthogonality is understood in a broad sense, and is given in terms of a nondegenerate continuous sesquilinear form, which in turn is determined by a quasidefinite matrix of bivariate generalized functions with a well defined support. The discussion of the orthogonality for such a sesquilinear form includes, among others, matrix Hankel cases with linear functionals, general matrix Sobolev orthogonality and discrete orthogonal polynomials with an infinite support. The results are mainly concerned with the derivation of Christoffel type formulas, which allow to express the perturbed matrix biorthogonal polynomials and its norms in terms of the original ones. The basic tool is the Gauss?Borel factorization of the Gram matrix, and particular attention is paid to the non-associative character, in general, of the product of semi-infinite matrices. The Geronimus transformation, in where a right multiplication by the inverse of a matrix polynomial and an addition of adequate masses is performed, is considered. The resolvent matrix and connection formulas are given. Two different methods are developed. A spectral one, based on the spectral properties of the perturbing polynomial, and constructed in terms of the second kind functions.This approach requires the perturbing matrix polynomial to have a nonsingular leading term
Internacional
Si
JCR del ISI
Si
Título de la revista
Complex Analysis And Operator Theory
ISSN
1661-8254
Factor de impacto JCR
0,739
Información de impacto
Volumen
DOI
Número de revista
Desde la página
3979
Hasta la página
4005
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Juan Carlos Garcia Ardila (UPM)
  • Autor: Francisco Jose Marcellan Español (UPM)
  • Autor: Manuel Enrique Mañas Baena (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Teoría de Aproximación Constructiva y Aplicaciones
S2i 2022 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)