Observatorio de I+D+i UPM

Memorias de investigación
Communications at congresses:
Feedback loops with electrically-driven microcantilevers
Year:2007
Research Areas
  • Electronics engineering
Information
Abstract
The electronic feedback used with microcantilevers (mu CLs) to obtain their best performances requires a precise driving method to exert on them a force proportional to an electrical signal. One of these methods is Electrostatic Driving (ED) easily achieved on mu CLs placed some nun apart from a conductive surface. This easy appearance of ED is the reason to find it unexpectedly, coming from electrical fields not properly shielded, in setups designed for other driving as Magnetic Driving (MD). When feedback loops designed for MD suffers from this ED contamination due to an unshielded solenoid for example, the tight phase control of the driving is lost. As a result, self-oscillation of the loop does not take place at f(0), the resonance frequency of the mu CL, or an appealing shift in the resonance frequency from f(0) without feedback to f(FB)=f(0) +/- Delta f with feedback appears in non-oscillating loops. A feedback force proportional to the displacement (DF) or to the speed (SF) of mu CLs has been studied and it is demonstrated that SF sets an apparent temperature for the thermal motion of a mu CL without changing its native f(0) (a desired feature for high stability mu CL-based oscillating sensors) whereas the f(FB) not equal f(0) produced by DF allows an electrical tuning of f(FB) very useful for mu CL-based Voltage Controlled Oscillators.
International
Si
Congress
Conference on Smart Sensors, Actuators and MEMS III. SPIE
960
Place
Maspalomas, ESPAÑA
Reviewers
Si
ISBN/ISSN
Start Date
02/05/2007
End Date
04/05/2007
From page
To page
Participants
  • Autor: Jose Ignacio Izpura Torres (UPM)
  • Autor: Javier Malo Gomez (UPM)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Microsistemas y materiales electrónicos
  • Departamento: Ingeniería Electrónica
  • Departamento: Sistemas Electrónicos y de Control
S2i 2019 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)