Observatorio de I+D+i UPM

Memorias de investigación
Research Publications in journals:
Hierarchical Function Approximation with a Neural Network Model
Year:2009
Research Areas
  • Artificial intelligence
Information
Abstract
This paper presents a model based on neural networks that permits to build a conceptual hierarchy in order to approximate functions over a given interval. A new kind of artificial neural networks using bio-inspired axo-axonic connections. These connections are based on the idea that the signal weight between two neurons is computed by the output of other neuron. Such model can generate polynomial expressions with lineal activation functions and the degree n of the output depends on the number n ¿ 2 of hidden layers. This network can approximate any pattern set with a polynomial equation, similar to Taylor series approximation. Results concerning function approximation using artificial neural networks based on multi-layer perceptrons with axo-axonic connections are shown. This neural system classifies an input pattern as an element belonging to a category or subcategory that the system has, until an exhaustive classification is obtained, that is, a hierarchical neural model. The proposed neural system is not a hierarchy of neural networks; this model establishes relationships among all the different neural networks in order to propagate the neural activation when an external stimulus is presented to the system. Each neural network is in charge of the input pattern recognition to any prototyped class or category, and also in charge of transmitting the activation to other neural networks to be able to continue with the approximation. Therefore, the communication of the neural activation in the system depends on the output of each one of the neural networks, so as the functional links established among the different networks to represent the underlying conceptual hierarchy.
International
Si
JCR
No
Title
Journal of Software Science and Computational Intelligence
ISBN
1942-9045
Impact factor JCR
0
Impact info
Volume
Journal number
0
From page
67
To page
80
Month
ENERO
Ranking
Participants
  • Autor: Fernando de Mingo Lopez (UPM)
  • Autor: Nuria Gomez Blas (UPM)
  • Autor: Fernando Arroyo Montoro (UPM)
  • Autor: Juan Bautista Castellanos Peñuela (UPM)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Grupo de Computación Natural
  • Grupo de Investigación: Grupo de Señal Fotónica
  • Departamento: Lenguajes, Proyectos y Sistemas Informáticos
  • Departamento: Inteligencia Artificial
  • Departamento: Organización y Estructura de la Información
S2i 2019 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)