Observatorio de I+D+i UPM

Memorias de investigación
Aerodynamic Optimization of the ICE2 High-Speed Train Nose using a Genetic Algorithm and Metamodels
Research Areas
  • Engineering
An aerodynamic optimization of the ICE 2 high-speed train nose in term of front wind action sensitivity is carried out in this paper. The nose is parametrically defined by Be?zier Curves, and a three-dimensional representation of the nose is obtained using thirty one design variables. This implies a more complete parametrization, allowing the representation of a real model. In order to perform this study a genetic algorithm (GA) is used. Using a GA involves a large number of evaluations before finding such optimal. Hence it is proposed the use of metamodels or surrogate models to replace Navier-Stokes solver and speed up the optimization process. Adaptive sampling is considered to optimize surrogate model fitting and minimize computational cost when dealing with a very large number of design parameters. The paper introduces the feasi- bility of using GA in combination with metamodels for real high-speed train geometry optimization.
Civil-Comp. Press.
Entity Nationality
Sin nacionalidad
Las Palmas de Gran Canaria, España
  • Autor: Jorge Muñoz Paniagua (UPM)
  • Autor: Javier Garcia Garcia (UPM)
  • Autor: Antonio Crespo Martinez (UPM)
  • Autor: Sinisa Krajnovic (Chalmers University of Technology)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Mecánica de fluidos aplicada a la Ingeniería Industrial
  • Departamento: Ingeniería Energética y Fluidomecánica
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)