UNIVERSIDAD POLITÉCNICA DE MADRID

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

Código PR/CL/001

ANX-PR/CL/001-02: GUÍA DE APRENDIZAJE

ANX-PR/CL/001-02 GUÍA DE APRENDIZAJE

ASIGNATURA

Estructuras de fabrica de ladrillo y bloque

CURSO ACADÉMICO - SEMESTRE

2015-16 - Segundo semestre

UNIVERSIDAD POLITÉCNICA DE MADRID

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

ANX-PR/CL/001-02: GUÍA DE APRENDIZAJE

Datos Descriptivos

Nombre de la Asignatura	Estructuras de fabrica de ladrillo y bloque		
Titulación	03AF - Master Universitario en Estructuras de la Edificacion		
Centro responsable de la titulación	E.T.S. de Arquitectura		
Semestre/s de impartición	Segundo semestre		
Carácter	Obligatoria		
Código UPM	33000325		
Nombre en inglés	Estructuras de Fabrica de Ladrillo y Bloque		

Datos Generales

Créditos	3	Curso	1
Curso Académico	2015-16	Período de impartición	Febrero-Junio
Idioma de impartición	Castellano	Otros idiomas de impartición	

Requisitos Previos Obligatorios

Asignaturas Superadas

El plan de estudios Master Universitario en Estructuras de la Edificacion no tiene definidas asignaturas previas superadas para esta asignatura.

Otros Requisitos

El plan de estudios Master Universitario en Estructuras de la Edificacion no tiene definidos otros requisitos para esta asignatura.

Conocimientos Previos

Asignaturas Previas Recomendadas

El coordinador de la asignatura no ha definido asignaturas previas recomendadas.

Otros Conocimientos Previos Recomendados

El coordinador de la asignatura no ha definido otros conocimientos previos recomendados.

UNIVERSIDAD POLITÉCNICA DE MADRID

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

ANX-PR/CL/001-02: GUÍA DE APRENDIZAJE

Competencias

- CE3 Conocimiento de la normativa española y europea sobre materiales y estructuras de edificación y su relación con la teoría moderna de estructuras.
- CE5 Capacidad de diseñar pruebas de carga in situ para estimar la capacidad portante de elementos estructurales existentes.
- CG6 Capacidad de evaluar la seguridad de las estructuras proyectadas o construidas con un nivel suficiente como para excluir con una probabilidad suficientemente alta los accidentes o hundimientos.
- CG9 Capacidad de de comunicarse con sus colegas, con la comunidad académica en su conjunto y con la sociedad en general acerca de sus áreas de conocimiento.

Resultados de Aprendizaje

- RA15 Adquisición de destrezas para el análisis del movimiento de sólidos y sistemas de sólidos
- RA14 Conocimiento de los principios fundamentales de la mecánica de los sistemas materiales
- RA16 Asimilación de los conocimientos y conceptos fundamentales de la ciencia e ingeniería de materiales.

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

ANX-PR/CL/001-02: GUÍA DE APRENDIZAJE

Profesorado

Profesorado

Nombre	Despacho	e-mail	Tutorías
Rio Vega, Concepcion Del (Coordinador/a)	Despacho 072	concepcion.delrio@upm.es	M - 17:30 - 18:30
Vega Catalan, Luis	despacho 072	luis.vega@upm.es	M - 17:30 - 18:30
Miguel Rodriguez, Jose Luis De	Despacho 072	joseluis.demiguelr@upm.es	M - 17:30 - 18:30

Nota.- Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

ANX-PR/CL/001-02: GUÍA DE APRENDIZAJE

Descripción de la Asignatura

La asignatura tiene como objetivo adquirir los conocimientos necesarios para el diseño, análisis, dimensionado y ejecución de estructuras de fábrica; y los procedimientos y rutinas para la definición de los correspondientes elementos estructurales a nivel de proyecto de ejecución.

Para ello es imprescindible profundizar y ampliar los conocimientos adquiridos en las materias de análisis y dimensionado; conocer los fundamentos del análisis de fábricas tradicionales, y explorar en el enfoque actual y el reconocimiento del potencial estructural de los elementos de fábrica, que se deducen de la normativa vigente.

Los parámetros que determinan el dimensionado de los elementos estructurales de fábrica son muy pocos y, prácticamente todos ellos, de carácter geométrico. La asignatura de fábricas trata de suministrar la formación necesaria para saber obtener las dimensiones geométricas que determinan el rango de validez de los elementos de fábrica típicos de una obra de arquitectura de nivel medio de complejidad.

La asignatura se enmarca dentro del Código Técnico de la Edificación que está actualmente en vigor. Se utiliza como referencia el Documento Básico ?Seguridad Estructural: Fábrica?, de obligado cumplimiento en las obras de edificación con elementos resistentes de fábrica. Ello supone un planteamiento nuevo para estos elementos, que va más allá del enfoque tradicional que mantenía la anterior normativa aplicable sólo a elementos de fábrica tradicional. El documento básico, DB SE-F, recoge dentro de su ámbito de aplicación cualquier elemento de fábrica realizado con cualquier pieza de las existentes en el mercado, y sometido a cualquier tipo de solicitación, sin ningún tipo de restricción más que las determinadas por el análisis.

El objetivo fundamental de la asignatura se pretende conseguir en dos fases. En una primera etapa se profundiza en los aspectos teóricos del análisis, para poder verificar, por procedimientos manuales, el cumplimiento de los requisitos de estabilidad y resistencia, impuestos por la normativa, en elementos habituales de fábrica (muros de carga, de arriostramiento, de sótano, cerramientos, vallas y petos, dinteles y cargaderos). En la segunda fase, se aplican los fundamentos teóricos a un caso práctico, para discernir los parámetros de diseño (fundamentalmente geométricos) que determinan el comportamiento mecánico de los elementos de fábrica, todo ello encaminado a la obtención de los criterios fundamentales de proyecto.

Al término de la asignatura, el alumno debe tener los recursos necesarios para proyectar, analizar, verificar y reconsiderar opciones de diseño, de estructuras de edificios convencionales realizados fundamentalmente con elementos resistentes de fábrica

Temario

- 1. Sistemas estructurales. Modelos
 - 1.1. Edificio. Estructuras de muros de fábrica. Identificación de sistemas estructurale
 - 1.2. Definición geométrica previa. Modelos para el análisis
 - 1.3. Comprobación de equilibrio. Margen de seguridad
 - 1.4. Comprobación resistente. margen de seguridad
 - 1.5. El material: piezas cerámicas, de hormigón, macizas, aligeradas, huecas, ladrillos, bloques, gran formato
 - 1.6. Modelos de respuesta: elástico; plástico. Concepto de capacidad resistente
 - 1.7. Redundancia, plasticidad, redistribución y margen plástico
 - 1.8. Tipos de encuentro: aproximaciones. Empotramiento perfecto
 - 1.9. Unión rígida. Unión con reacción de un solo signo

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

- 2. Muros de carga en primer y segundo orden
 - 2.1. Muros de carga. Acciones. Solicitaciones en primer orden
 - 2.1.1. Modelo para el análisis de muros de carga. Modelo dintel frente a modelo pórtico
 - 2.1.2. Interacción entre forjado y muro. Análisis elástico simplificado. Términos de rigidez
 - 2.1.3. Evaluación de cargas en primera aproximación. Evaluación más ajustada en segunda aproximación: efecto de la continuidad de los forjados
 - 2.1.4. Reglas prácticas de dimensionado. Definición geométrica para el análisis
 - 2.1.5. Cálculo de solicitaciones. Tipos de nudos. Determinción del esfuerzo normal y momento flector en secciones extremas de muros. procedimiento simplificado para cada tipo de nudo
 - 2.1.6. Reparto del momento flector procedente de las cargas. reparto por rigidez. Reparto por capacidad
 - 2.1.7. Plastificación. Condiciones para plastificación total o parcial
 - 2.1.8. Discusión de los diferentes casos de carga. Esfuerzo normal contra momento flector
 - 2.1.9. Introducción de la seguridd. Coeficientes parciales de seguridad de acciones
 - 2.2. Trayectoria de compresiones. Estado de tensiones
 - 2.2.1. Compresión compuesta. Modelo de respuesta de las fábricas. Modelo plástico sin tracciones
 - 2.2.2. Representación de las curvas de resistencia. Curva esfuerzo normal-excentricidad
 - 2.2.3. Compresión esviada. Sección eficaz: modelo de bloque comprimido cobaricéntrico
 - 2.2.4. Solicitación en las secciones extremas de muros en términos de esfuerzo normal excéntrico
 - 2.2.5. Deducción de la excentricidad en la sección central
 - 2.2.6. Construcción de la línea de presiones o trayectoria de cargas
 - 2.2.7. Interpretación del comportamiento mecánico de los muros de carga: muros exteriores e interiores
 - 2.3. Muros de carga en segundo orden. Pandeo
 - 2.3.1. Estabilidad ante carga vertical. Arriostramiento
 - 2.3.2. Condiciones de los muros de arriostramiento y los muros arriostrados
 - 2.3.3. Longitud de pandeo. Influencia de las condiciones de arriostramiento
 - 2.3.4. Muros de carga arriostrados en dos, tres o cuatro bordes
 - 2.3.5. Definición de esbeltez. Límite de la esbeltez en muros de carga
 - 2.3.6. Sensibilidad de los muros de carga a las imperfecciones de ejecución
 - 2.3.7. Introducción en el análisis de los efectos de segundo orden
 - 2.3.8. Incremento de excentricidad por ejecución. Incremento de excentricidad por pandeo
 - 2.3.9. Trayectoria de la carga gravitatoria en segundo orden
 - 2.3.10. Comprobación de las secciones de cabeza y base. Comprobación de la sección central
 - 2.3.11. Estrategias de proyecto para reducir los efectos de segundo orden

UNIVERSIDAD POLITÉCNICA DE MADRID

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

- 3. Acciones horizontales en los edificios. Estabilidad global con estructura de muros
 - 3.1. Introducción. Documento Básico: "Seguridad Estructural. Acciones en la Edificación"
 - 3.2. Acción de viento. Presión dinámica. Coeficiente de exposición. Coeficiente eólico. Presión estática
 - 3.3. Presión y succión
 - 3.4. Modelo para el análisis a viento en los edificios
 - 3.5. Valores de los coeficientes de exposición en función del entorno, altura y topografía
 - 3.6. Valores de los coeficientes eólicos globales en función de la esbeltez del edificio
 - 3.7. Coeficiente eólico en naves y construcciones diáfanas
 - 3.8. Introducción de la seguridad. casos de carga. Influencia favorable de la carga gravitatoria
- 4. Muros de arriostramiento. Verificación de la capacidad resistente a corte
 - 4.1. Muros de arriostramiento. Análisis de solicitaciones. Esfuerzo nornal, esfuerzo cortante y momento flector
 - 4.2. Valor de cálculo del esfuerzo normal. Acción gravitatoria favorable
 - 4.3. Evaluación del esfuerzo normal que contribuye a la resistencia a cortante
 - 4.4. Excentricidad del esfuerzo normal en la base. Sección de base totalmente comprimida
- 4.5. Sección de base con tracciones. Evaluación de la longitud de cálculo
- 4.6. Comprobación a tensión normal
- 4.7. Comprobación a esfuerzo cortante. Evaluación de la capacidad resistente a corte
- 4.8. Influencia de la geometría. Influencia de la carga gravitatoria. Estrategias de proyecto

UNIVERSIDAD POLITÉCNICA DE MADRID

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

- 5. Muros de cerramiento. Modelos de análisis: arco, viga, placa. Líneas de rotura
 - 5.1. Acciones laterales en muros. Modelos de referencia para el análisis
 - 5.1.1. Acción de viento en los muros de fachada. Muros no cargados
 - 5.1.2. Comportamiento mecánico de los cerramientos
 - 5.1.3. Modelos de referencia para el análisis. Modelos "arco", "viga" y "placa"
 - 5.1.4. Influencia de las condiciones de sustentación. Soluciones constructivas
 - 5.1.5. Cerramientos sin soportes en fachada. Cerramientos confinados. Modelo arco. Condición de entrega
 - 5.1.6. Cerramientos con junta horizontal de movimiento en cabeza. Modelo viga
 - 5.1.7. Cerramientos con soportes en fachada. Modelo placa. Condiciones geométricas
 - 5.2. Modelo arco. primer y segundo orden
 - 5.2.1. Descripción del esquema resistente por arco. Resistencia a flexión sin tracciones. Empuje
 - 5.2.2. Parámetros geométricos fundamentales: espesor, entrega en el forjado, altura libre
 - 5.2.3. Capacidad resistente en primer orden. Capacidad frente a presión. Capacidad frente a succión
 - 5.2.4. Introducción de los efectos de segundo orden. Deformación del arco. Disminución del canto eficaz
 - 5.2.5. Procedimiento de cálculo. Método iterativo. Deformación de equilibrio. Esbeltez límite
 - 5.2.6. Introducción simplificada de los efectos de segundo orden. Valores de entrega mínima
 - 5.2.7. Comprobaciones adicionales. Contrapeso en última planta
 - 5.2.8. Exigencias constructivas: confinamiento, entrega. Cerramientos en altura. Acumulación de carga
 - 5.3. Modelo viga y placa. Líneas de rotura
 - 5.3.1. Descripción del esquema resistente por placa. Resistencia a flexión con tracciones. Anisotropía
 - 5.3.2. Resistencia a flexión por tendeles. Resistencia a flexión por llagas. Coeficiente de rateo ortogonal
 - 5.3.3. Cerramientos convencionales no cargados. Asimilación a un medio isótropo
 - 5.3.4. Coeficiente de rateo en función de las capacidades resistentes
 - 5.3.5. Cerramientos cargados. Muros de carga exteriores. Resistencia sin tracción por tendeles
 - 5.3.6. Influencia de las condiciones de sustentación. Influencia de la continuidad del aparejo
 - 5.3.7. Soluciones de encuentro con soportes. Soluciones de encuentro con forjados
 - 5.3.8. Recursos adicionales. Fábrica armada. Capacidad resistente de la armadura. Incorporación del peso propio
 - 5.3.9. Cerramientos con junta horizontal de movimiento. Descripción de las sustentaciones
 - 5.3.10. Cerramientos autoportantes anclados a la estructura. Descripción de las sustentaciones
 - 5.3.11. Influencia de las proporciones geométricas de los paños
 - 5.3.12. Paños de gran altura. Modelo de viga horizontal

UNIVERSIDAD POLITÉCNICA DE MADRID

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

- 6. Petos vallas y tabiques. Dinteles. Gran canto
 - 6.1. Determinación de la acción horizontal en elementos exentos
 - 6.2. Capacidad resistente de muros sueltos en cabeza
 - 6.3. Recursos adicionales. Elementos auxiliares
 - 6.4. Acción horizontal en tabiques según el Documento Básico de Acciones
 - 6.5. Capacidad resistente de tabiques. Modelos arco, viga y placa
 - 6.6. Acción gravitatoria en dinteles y vigas de gran canto
 - 6.7. Capacidad resistente de dinteles de fábrica: viga ordinaria, viga de gran canto. Empujes

UNIVERSIDAD POLITÉCNICA DE MADRID

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

Actividades Evaluación

ANX-PR/CL/001-02: GUÍA DE APRENDIZAJE

Otra Actividad Presencial

Cronograma

Semana

Horas totales: 28 horas Horas presenciales: 28 horas (35.9%)

Actividad Prensencial en

Peso total de actividades de evaluación continua: Peso total de actividades de evaluación sólo prueba final:

100% 100%

Actividad Prensencial en Aula

Laboratorio Semana 1 Clase teórica. Tema 1 LM: Actividad del tipo Lección Semana 2 Clase teórica. Tema 2 Duración: 03:30 LM: Actividad del tipo Lección Semana 3 Clase teórica. Tema 3 Realización de la primera parte del ejercicio de curso Duración: 03:30 Duración: 03:30 LM: Actividad del tipo Lección TG: Técnica del tipo Trabajo en Grupo Evaluación continua y sólo prueba Actividad presencial Semana 4 Clase teórica. Tema 4 Duración: 03:30 LM: Actividad del tipo Lección Magistral Semana 5 Clase teórica. Tema 5 Duración: 03:30 LM: Actividad del tipo Lección Magistral Semana 6 Clase teórica. Tema 6 Realización de la segunda parte del ejercicio de curso Duración: 01:30 LM: Actividad del tipo Lección Magistral TG: Técnica del tipo Trabajo en Grupo Evaluación continua y sólo prueba Explicación ejercicio de curso Duración: 02:00 Actividad presencial PR: Actividad del tipo Clase de Problemas Semana 7 Semana 8 Semana 9 Semana 10 Semana 11 Semana 13 Semana 14

Nota.- El cronograma sigue una planificación teórica de la asignatura que puede sufrir modificaciones durante el curso.

Nota 2.- Para poder calcular correctamente la dedicación de un alumno, la duración de las actividades que se repiten en el tiempo (por ejemplo, subgrupos de prácticas") únicamente se indican la primera vez que se definen.

Semana 15 Semana 16 Semana 17

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

ANX-PR/CL/001-02: GUÍA DE APRENDIZAJE

Actividades de Evaluación

Semana	Descripción	Duración	Tipo evaluación	Técnica evaluativa	Presencial	Peso	Nota mínima	Competencias evaluadas
3	Realización de la primera parte del ejercicio de curso	03:30	Evaluación continua y sólo prueba final	TG: Técnica del tipo Trabajo en Grupo	Sí	50%	5 / 10	CE5, CE3, CG6, CG9
6	Realización de la segunda parte del ejercicio de curso	03:30	Evaluación continua y sólo prueba final	TG: Técnica del tipo Trabajo en Grupo	Sí	50%	5 / 10	CE5, CE3, CG6, CG9

Criterios de Evaluación

La evaluación se realiza sobre el trabajo de curso, que se entrega al final del cuatrimestre.

El trabajo consta de dos partes. Una primera parte es de carácter obligatorio, para poder optar al aprobado. la segunda parte es de carácter voluntario, para optar a notable o sobresaliente.

No existe evaluación extraordinaria.

UNIVERSIDAD POLITÉCNICA DE MADRID

E.T.S. de Arquitectura

PROCESO DE SEGUIMIENTO DE TÍTULOS OFICIALES

ANX-PR/CL/001-02: GUÍA DE APRENDIZAJE

Recursos Didácticos

Descripción	Tipo	Observaciones
Structures or why things don?t fall down. J.E. Gordon. 1978. Penguin Books	Bibliografía	Libro clásicos sobre estructuras de índole general
Estructuras para arquitectos. M. Salvadori y R. Heller. 1987. CP67 (Buenos Aires)	Bibliografía	Libro clásico sobre estructuras de índole general
Razón y ser de los tipos estructurales. E. Torroja	Bibliografía	Libro clásico sobre estructuras de índole general
Understanding structures. Derek Seward. 1994. MacMillan Press	Bibliografía	Libro clásico sobre estructuras de índole general
La estructura. H. Werner Rosenthal. 1975. Blume	Bibliografía	Libro clásico sobre estructuras de índole general
Sistemas de Estructuras. Heinrich Engel. 1979. Blume	Bibliografía	Libro clásico sobre estructuras de índole general
Cálculo de Estructuras. R. Argüelles, 1981. ETS de Montes	Bibliografía	Libro clásico sobre estructuras de índole general
Diseño estructural en arquitectura. M.Salvadori y M.Levy. 1970. CECSA (Méjico	Bibliografía	Libro clásico sobre estructuras de índole general
Elasticidad. A. Arangoá. 1974. I.G.C.	Bibliografía	Libro clásico sobre estructuras de índole general
Resistencia de materiales. W.A. Nash. 1969. Compendios Schaum. McGraw Hill	Bibliografía	Libro clásico sobre estructuras de índole general
Teoría de las estructuras. Thimoshenko. 1945. Espasa Calpe	Bibliografía	Libro clásico sobre estructuras de índole general
Disesti statici delle structure edilizie. S. Mastrodicasa. 1974. Hoepli (Milán)	Bibliografía	Libro sobre estructuras de fábrica
La realizzazione di murature in laterizio. Nomberto Tubi. Edicioni Laterconsult, Andil	Bibliografía	Libro sobre estructuras de fábrica
Nuevas técnicas en la obra de fábrica. D. Bernstein, JP Champetier. F Peiffer. Ed. G.G.	Bibliografía	Libro sobre estructuras de fábrica
Estructuras de Fábrica. Jacques Heyman. 1995. Instituto Juan de Herrera	Bibliografía	Libro sobre estructuras de fábrica
Los materiales básicos de la construcción. J. Arcos. Capítulo 4 La Cerámica	Bibliografía	Libro sobre materiales de construcción
Principios de la construcción. Editorial G.G.	Bibliografía	Libro clásico de construcción de índole general
Construcción Manuales, A.J. H. Blume Ediciones	Bibliografía	Libro clásico sobre construcción. Manuales
Artículos técnicos	Recursos web	Artículos relacionados con los temas de curso