PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

53001557 - Digital electronics and microprocessors

PLAN DE ESTUDIOS

05BG - Master Universitario en Electronica Industrial

CURSO ACADÉMICO Y SEMESTRE

2017/18 - Primer semestre

Índice

Guía de Aprendizaje

CAMPUS DE EXCELENCIA INTERNACIONAL

1. Datos descriptivos	1
2. Profesorado	
3. Competencias y resultados de aprendizaje	
4. Descripción de la asignatura y temario	
5. Cronograma	
6. Actividades y criterios de evaluación	
7. Recursos didácticos	

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	53001557 - Digital electronics and microprocessors			
No de créditos	3 ECTS			
Carácter	Optativa			
Curso	Primer curso			
Semestre	Primer semestre			
Período de impartición	Septiembre-Enero			
Idioma de impartición	Castellano			
Titulación	05BG - Master Universitario en Electronica Industrial			
Centro en el que se imparte	Escuela Tecnica Superior de Ingenieros Industriales			
Curso académico	2017-18			

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Jose Andres Otero Marnotes (Coordinador/a)	CEI	joseandres.otero@upm.es	Sin horario. Disponible para tutorías cualquier día de la semana, en el horario de trabajo habitual. El horario de la tutoria será acordado vía e- mail.

* Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Competencias y resultados de aprendizaje

3.1. Competencias que adquiere el estudiante al cursar la asignatura

- CB06 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
- CB07 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- CB10 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- CE01 Comprender, diseñar y analizar sistemas y componentes electrónicos en el ámbito de la electrónica industrial. Modelización y caracterización de sistemas electrónicos complejos.
- CE04 Utilización de herramientas CAD para la simulación, modelado y diseño de circuitos electrónicos industriales con altas prestaciones y/o restricciones
- CG02 Saber aplicar e integrar sus conocimientos, la comprensión de estos, su fundamentación científica y sus capacidades de resolución de problemas en entornos nuevos y definidos de forma imprecisa, incluyendo contextos de carácter multidisciplinar tanto investigadores como profesionales altamente especializados.
- CG03 Saber evaluar y seleccionar la teoría científica adecuada y la metodología precisa de sus campos de estudio para formular juicios a partir de información incompleta o limitada incluyendo, cuando sea preciso y pertinente, una reflexión sobre la responsabilidad social o ética ligada a la solución que se proponga en cada caso.
- CT01 Uso de la lengua inglesa

3.2. Resultados del aprendizaje al cursar la asignatura

- RA123 Validar sistemas digitales reales.
- RA58 Emplear el lenguaje VHDL para el diseño e implementación de sistemas digitales.
- RA122 Analizar y diseñar sistemas digitales y sistemas basados en microprocesador.
- RA59 Validar sistemas digitales reales
- RA124 Comprender la estructura interna de la CPU y los dispositivos y métodos de E/S.
- RA57 Analizar y diseñar sistemas digitales y sistemas basados en microprocesador
- RA60 Comprender la estructura interna de la CPU y los dispositivos y métodos de E/S

4. Descripción de la asignatura y temario

4.1. Descripción de la asignatura

Esta asignatura tiene como objetivo que todos los alumnos de Master de Electrónica Industrial adquieran unos conocimientos prácticos, actuales, por encima de los conocimientos básicos que resultan de los cursos de electrónica digital y microprocesadores, propios de grado. Los alumnos desarrollarán sus conocimientos y destrezas de diseño digital diseñando un sistema y utilizando herramientas profesionales, así como métodos de validación, codificación y calidad, rigurosos y compatibles con los utilizados en sectores industriales diversos. Deberán además poner en práctica su capacidad de diseñar sistemas basados en microprocesador, sobre dispositivos y arquitecturas comerciales, de gran uso a nivel industrial.

4.2. Temario de la asignatura

- 1. Digital Electronics
 - 1.1. Introduction to Digital Electronics: Binary Codes, Logic Functions and Gates
 - 1.2. Combinatorial Circuits
 - 1.3. Sequential Circuits and Applications
 - 1.4. VHDL for Synthesis and Simulation of Digital Circuits
- 2. Microprocessors
 - 2.1. Introduction to Microcontrollers
 - 2.2. Internal Architecture of the Microprocessor.
 - 2.3. I/O Devices and Programming Methods.
 - 2.4. Interrupts

5. Cronograma

CAMPUS DE EXCELENCIA INTERNACIONAL

5.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Otra actividad presencial	Actividades de evaluación
1	Presentation of the Course Duración: 01:00 LM: Actividad del tipo Lección Magistral			
2	Combinatorial Circuits Duración: 01:00 PR: Actividad del tipo Clase de Problemas			
3	Sequential Circuits: Flip-Flops and Applications Duración: 01:00 LM: Actividad del tipo Lección Magistral			
4	Sequential Circuits Duración: 01:00 PR: Actividad del tipo Clase de Problemas			
5	VHDL Duración: 01:00 LM: Actividad del tipo Lección Magistral			
6	VHDL Duración: 01:00 LM: Actividad del tipo Lección Magistral			
7		Labs on VHDL Duración: 15:00 PL: Actividad del tipo Prácticas de Laboratorio		
8	Introduction to Microcontrollers Duración: 01:00 LM: Actividad del tipo Lección Magistral			
9	Internal Architecture of the Microprocessor Duración: 01:00 LM: Actividad del tipo Lección Magistral			
10	I/O Devices and Programming Methods Duración: 01:00 LM: Actividad del tipo Lección Magistral			
11	I/O Devices and Programming Methods Duración: 01:00 PR: Actividad del tipo Clase de Problemas			
12	Interrupts Duración: 01:00 LM: Actividad del tipo Lección Magistral			
13	Interrupts Duración: 01:00 PR: Actividad del tipo Clase de Problemas			

14	Lab on Arduino Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio	
		Desarrollo de las prácticas obligatorias y de un trabajo individual sobre el uso del lenguaje de descripción hardware VHDL. TI: Técnica del tipo Trabajo Individual Evaluación continua Duración: 01:00
16		Desarrollo de las prácticas obligatorias y de un trabajo individual sobre la programación de microcontroladores. TI: Técnica del tipo Trabajo Individual Evaluación continua Duración: 01:00
		Examen escrito al finalizar la asignatura. Estará centrado en la resolución de problemas relacionados con los aspectos teóricos de la asignatura. EX: Técnica del tipo Examen Escrito Evaluación sólo prueba final Duración: 02:00

Las horas de actividades formativas no presenciales son aquellas que el estudiante debe dedicar al estudio o al trabajo personal.

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

* El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso.

6. Actividades y criterios de evaluación

6.1. Actividades de evaluación de la asignatura

6.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
16	Desarrollo de las prácticas obligatorias y de un trabajo individual sobre el uso del lenguaje de descripción hardware VHDL.	TI: Técnica del tipo Trabajo Individual	Presencial	01:00	70%	5/10	CB07 CB10 CG03 CG02 CT01 CE01
16	Desarrollo de las prácticas obligatorias y de un trabajo individual sobre la programación de microcontroladores.	TI: Técnica del tipo Trabajo Individual	Presencial	01:00	30%	5/10	CB06 CB07 CB10 CG03 CG02 CT01 CE01

6.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
16	Examen escrito al finalizar la asignatura. Estará centrado en la resolución de problemas relacionados con los aspectos teóricos de la asignatura.	EX: Técnica del tipo Examen Escrito	Presencial	02:00	100%	5/10	CB06 CB07 CG03 CG02 CT01 CE01

6.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

6.2. Criterios de evaluación

La evaluación de la asignatura tiene dos componentes. Por un lado se realizará mediante evaluación continua, para lo que los alumnos deberán realizar 4 prácticas obligatorias y además entregar dos trabajos. El primero de los trabajos tratará sobre el diseño e implementación de un sistema digital descrito en VHDL sobre una FPGA y el otro sobre el desarrollo de un sistema basado en microcontrolador. Al tratarse de una asignatura de intensificación se buscará fortalecer los conceptos básicos en ambos temas. Los trabajos serán individuales y los alumnos tendrán hasta el día del examen para entregarlos.

Por otro lado ser realizará un examen final con el que se evaluará la capacidad del alumno para la resolución de problemas sobre electrónica digital y microcontroladores. La nota final será un 50% la del examen final (condicionado a la obtención de un mínimo de 5), un 15% por la realización de las prácticas propuestas, un 25% por el trabajo de VHDL y un 10% por el de microcontroladores.

7. Recursos didácticos

7.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones		
Digital Design and Computer	Bibliografía	David Money and Sarah Harris. Elsevier-		
Architecture		Morgan Kauffmann, 2007 		
Material de clase	Bibliografía	Copias de las transparencias		
Placas FPGAs	Equipamiento	Diseño de circuitos digitales básicos		
Placas Arduino	Equipamiento	Placa para el diseño de sistemas básicos		
Flacas Aldullo	Lquipaimento	basados en microcontrolador.		