

ASIGNATURA

53000969 - Bioingenieria

PLAN DE ESTUDIOS

05AT - Master Universitario en Ingenieria Mecanica

CURSO ACADÉMICO Y SEMESTRE

2017-18 - Segundo semestre

Índice

Guía de Aprendizaje

CAMPUS DE EXCELENCIA INTERNACIONAL

1. Datos descriptivos	1
2. Profesorado	
3. Competencias y resultados de aprendizaje	
4. Descripción de la asignatura y temario	
5. Cronograma	
6. Actividades y criterios de evaluación	
7. Recursos didácticos	
8. Otra información	

1. Datos descriptivos

1.1 Datos de la asignatura

Nombre de la Asignatura	53000969 - Bioingenieria			
Nº de Créditos	3 ECTS			
Carácter	Bioengineering			
Curso	Primer curso			
Semestre	Segundo semestre			
Período de impartición	Febrero-Junio			
Idioma de impartición	Castellano			
Titulación	05AT - Master Universitario en Ingenieria Mecanica			
Centro en el que se imparte	Escuela Tecnica Superior de Ingenieros Industriales			
Curso Académico	2017-18			

2. Profesorado

2.1 Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías*
Andres Diaz Lantada (Coordinador/a)		andres.diaz@upm.es	Consultar por email
Julio Muñoz Garcia		julio.munoz@upm.es	Consultar por email

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Competencias y resultados de aprendizaje

3.1 Competencias que adquiere el estudiante al cursar la asignatura

CE1 - Utilizar las ventajas que aportan las herramientas de diseño y cálculos asistidos por computador (?M-CAE?) en el sector, empleando las principales directivas y normativas.

CE2 - Realizar actividades de análisis, diseño, fabricación, ensayo y mantenimiento de máquinas, productos y dispositivos, aplicando metodologías estructuradas, considerando el ciclo de vida global.

3.2 Resultados del aprendizaje al cursar la asignatura

RA12 - ? Conocer los principales tipos de dispositivos médicos. ? Conocer los principales campos de aplicación de dispositivos médicos en ingeniería biomédica (soluciones diagnósticas, terapéuticas y de apoyo). ? Conocer las ventajas de las metodologías estructuradas de diseño y desarrollo. ? Capacidad para diseñar dispositivos médicos para resolver problemas concretos. ? Capacidad para seleccionar los materiales más adecuados para dichos dispositivos. ? Conocer las principales tecnologías de diseño, ingeniería y fabricación CAD-CAE-CAM que apoyan al desarrollo de dispositivos médicos. ? Conocer las principales tecnologías de rapid prototyping que apoyan al desarrollo de dispositivos médicos.

4. Descripción de la asignatura y temario

4.1 Descripción de la asignatura

La asignatura "Bioingeniería" se orienta a la preparación de los alumnos para la ejecución de tareas de diseño y desarrollo de productos en la industria de los dispositivos médicos, así como en centros de investigación y universidades. La asignatura no sólo busca aportar los conocimientos y habilidades necesarias para desarrollos técnicamente válidos; sino también proporcionar una serie de valores éticos y recomendaciones de seguridad, que ayuden a minimizar riesgos en la aplicación de los futuros dispositivos que los alumnos puedan desarrollar. Está planteada según las recomendaciones de la Declaración de Bolonia de cara a la implantación del Espacio Europeo de Educación Superior (EEES), buscando en todo momento una mayor implicación del estudiante en su propio aprendizaje y con unos objetivos de enseñanza ? aprendizaje, persiguiendo la transmisión de los conocimientos, actitudes y habilidades, que se enumeran a continuación.

4.2 Temario de la asignatura

- 1. Introducción a la Bioingeniería
- 2. Introducción a la industria de los dispositivos médicos
- 3. Materiales metálicos en Bioingeniería.
- 4. Materiales poliméricos en Bioingeniería.
- 5. Materiales cerámicos en Bioingeniería.
- 6. Mejora de propiedades: Empleo de recubrimientos.
- 7. Materiales activos en Bioingeniería.
- 8. Introducción a ingeniería de tejidos.
- 9. Solicitaciones mecánicas en organismos vivos.
- 10. Bioestructuras.
- 11. Mecanismos biológicos.
- 12. La biomímesis como herramienta de diseño.
- 13. Rehabilitación, ortopedia, ergonomía.
- 14. El proceso de desarrollo de dispositivos médicos y bioingenios.
- 15. Tecnologías de diseño, simluación y fabricación asistidas por computador.
- 16. Tecnologías de prototipado rápido por fabricación aditiva.
- 17. Microsistemas y nanosistemas biomédicos.
- 18. Biocompatibilidad, normativa, reglamentación.

5. Cronograma

5.1 Cronograma de la asignatura*

Semana	Actividad Presencial en Aula	Actividad Presencial en Laboratorio	Otra Actividad Presencial	Actividades de Evaluación
1	Tema 1 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
2	Tema 2 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
3	Tema 3 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
4	Tema 4 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
5	Tema 5 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
6	Tema 6 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
7	Tema 7 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
8	Tema 8 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
9	Tema 9 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
10	Tema 10 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
11	Tema 11 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
12	Tema 12 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
13	Tema 13 Duración: 01:00 LM: Actividad del tipo Lección Magistral			
14		Tema 14 Duración: 02:00 AC: Actividad del tipo Acciones Cooperativas		

CAMPUS DE EXCELENCIA INTERNACIONAL

15	iema 15 Duración: 02:00 PL: Actividad del tipo Prácticas de aboratorio	
16	i ema 16 Duración: 02:00 PL: Actividad del tipo Prácticas de aboratorio	Trabajo de la asignatura TG: Técnica del tipo Trabajo en GrupoEvaluación continua y sólo prueba final Duración: 40:00
17		Examen individual EX: Técnica del tipo Examen EscritoEvaluación continua y sólo prueba final Duración: 01:00

^{*} El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso.

6. Actividades y criterios de evaluación

6.1 Actividades de evaluación de la asignatura

6.1.1 Evaluación continua

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
16	Trabajo de la asignatura	TG: Técnica del tipo Trabajo en Grupo	Presencial	40:00	80%	5/10	CE1
17	Examen individual	EX: Técnica del tipo Examen Escrito	Presencial	01:00	20%	5/10	CE1

6.1.2 Evaluación sólo prueba final

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
16	Trabajo de la asignatura	TG: Técnica del tipo Trabajo en Grupo	Presencial	40:00	80%	5/10	CE1
17	Examen individual	EX: Técnica del tipo Examen Escrito	Presencial	01:00	20%	5/10	CE1

6.1.3 Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

6.2 Criterios de Evaluación

CAMPUS

DE EXCELENCIA

INTERNACIONAL

Los alumnos se dividirán en grupos de 2 personas y recibirán un contexto sobre el que trabajar en equipo, ligado al desarrollo completo de distintos dispositivos médicos (que irán cambiando curso a curso para mantener la novedad y promover la renovación y mejora continua de la asignatura). Inspirándose en patentes, planos y diseños de dispositivos similares, los alumnos diseñarán versiones sencillas y de bajo coste, de distintos dispositivos propuestos, cumpliendo con su lista de especificaciones iniciales, estableciendo la función global del sistema, dividiéndola en las sub-funciones principales, encontrando los principios resolutivos para las distintas subfunciones y, por integración y evaluación, llegando al principio resolutivo adecuado, trabajando sobre el concepto de producto para definir geometrías, materiales, principios de accionamiento, transmisión y actuación, con ayuda de herramientas de diseño e ingeniería asistidas por computador, y seleccionando elementos comerciales hasta llegar a un diseño detallado.

Los diseños se fabricarán y ensayarán con ayuda de las tecnologías disponibles en el Laboratorio de Desarrollo de Productos de la UPM. Los distintos dispositivos se montarán y ensayarán como apoyo a la validación del diseño y para propuesta de mejoras finales. Los dispositivos construidos quedarán a disposición de las unidades docentes para futuras prácticas en diversas asignaturas.

En relación a la evaluación, se fomentará la interdependencia positiva, planteando problemas de envergadura suficiente como para promocionar la implicación de todos los alumnos de cada equipo en el proyecto de desarrollo del dispositivo médico, y se garantizará la exigibilidad individual, complementando la evaluación grupal ligada al proyecto final (80% de la calificación) con actividades y entregables individuales (20% de la calificación).

7. Recursos didácticos

7.1 Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
Diaz Lantada, A. Handbook on		
Advanced Design and Manufacturing	Bibliografía	Libro.
Technologies for Biomedical Devices		
Tecnologías de diseño asistido por		
computador y simulación de la	Otros	Software de apoyo.
División de Ingeniería de Máquinas		
Tecnologías de fabricación del		
Laboratorio de Desarrollo de	Equipamiento	Tecnologías.
Productos de la UPM		

8. Otra información

8.1 Otra información sobre la asignatura

La asignatura cuenta con los siguientes casos de estudio como material de apoyo:

Casos de estudio.- Reconstrucción craneal basada en imágenes TAC, Simulación de stent expandible montado sobre balón, Simulación de aneurismas aórticos, Diseño de esfínter artificial por accionamiento magnético, Diseño y prototipo de microbomba peristáltica, Diseño y prototipo de microbomba piezoeléctrica, Diseño y prototipo de bomba de engranajes, Diseño y prototipo de stent autoexpandible, Diseño y prototipo de stent en Y, Diseño personalizado adaptado a tejidos duros: Prótesis de cadera, Diseño personalizado adaptado a tejidos blandos: Prótesis cardiaca, Desarrollo completo de sistema para diagnóstico del bruxismo, Desarrollo completo de sistema para tratamiento de la insuficiencia mitral, Desarrollo completo de extremos activos para catéteres, Desarrollo completo de ?scaffolds? microestructurados para crecimiento de células madre, Desarrollo completo de ?scaffolds? fractales para crecimiento de tejidos, Desarrollo completo de micro válvula para glaucoma, Desarrollo completo de dispositivos ?lab-on-chip? y ?organ-on-chip?, entre otros.