PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

53000972 - Tribologia

PLAN DE ESTUDIOS

05AT - Master Universitario En Ingenieria Mecanica

CURSO ACADÉMICO Y SEMESTRE

2018/19 - Primer semestre

Índice

Guía de Aprendizaje

CAMPUS DE EXCELENCIA INTERNACIONAL

1. Datos descriptivos	1
2. Profesorado	1
3. Conocimientos previos recomendados	2
4. Competencias y resultados de aprendizaje	2
5. Descripción de la asignatura y temario	3
6. Cronograma	6
7. Actividades y criterios de evaluación	8
8. Recursos didácticos	11

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	53000972 - Tribologia
No de créditos	3 ECTS
Carácter	Optativa
Curso	Primer curso
Semestre	Primer semestre
Período de impartición	Septiembre-Enero
Idioma de impartición	Castellano
Titulación	05AT - Master universitario en ingenieria mecanica
Centro en el que se imparte	05 - Escuela Tecnica Superior de Ingenieros Industriales
Curso académico	2018-19

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Javier Echavarri Otero (Coordinador/a)	05A.01.085.0	javier.echavarri@upm.es	Sin horario. Horario permanente en División de Ingeniería de Máquinas. Petición de cita previa de forma verbal o por e- mail.

			Sin horario.
		Horario permanente	
			en División de
Enrique Chacon Tanarro	e.chacon@upm.es	Ingeniería de	
		Máquinas. Petición	
		de cita previa de	
		forma verbal o por e-	
		mail.	

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

El plan de estudios Master Universitario en Ingenieria Mecanica no tiene definidas asignaturas previas recomendadas para esta asignatura.

3.2. Otros conocimientos previos recomendados para cursar la asignatura

- Manejo de software Matlab a nivel básico.
- Conocimiento de Teoría de Máquinas y Mecanismos, Diseño de Máquinas y Tecnología de Materiales

4. Competencias y resultados de aprendizaje

4.1. Competencias

- CE1 Utilizar las ventajas que aportan las herramientas de diseño y cálculos asistidos por computador (?M-CAE?) en el sector, empleando las principales directivas y normativas.
- CE2 Realizar actividades de análisis, diseño, fabricación, ensayo y mantenimiento de máquinas, productos y dispositivos, aplicando metodologías estructuradas, considerando el ciclo de vida global.
- CE9 Redactar de documentación técnica y no especializada dentro del ámbito de la ingeniería mecánica. Búsqueda de fuentes y uso de Bases de datos. Difusión de resultados.

- CG 1 Aplicar conocimientos de ciencias y tecnologías avanzadas a la práctica de la Ingeniería Mecánica
- CG 2 Diseñar, desarrollar, implementar, gestionar y mejorar productos, sistemas y procesos en los distintos ámbitos de la ingeniería mecánica, usando técnicas analíticas, computacionales o experimentales apropiadas.
- CG 3 Aplicar los conocimientos adquiridos para identificar, formular y resolver problemas dentro de contextos amplios y multidisciplinarios, siendo capaces de integrar conocimientos, trabajando en equipos multidisciplinares y desarrollando actividades de I+D.
- CG 7 Aplicar nuevas tecnologías y herramientas de la Ingeniería Mecánica en sus actividades profesionales.
- CG 8 Operar en un entorno bilingüe (inglés-español).
- CG 9 Crear nuevas ideas (Creatividad).

4.2. Resultados del aprendizaje

- RA39 - Identificación y análisis de la influencia de cada uno de los parámetros que intervienen en los contactos entre superficies.
- RA42 Selección de los lubricantes más adecuados para cada aplicación
- RA40 Análisis de la probabilidad de aparición de desgaste en contactos secos y lubricados
- RA41 Predicción del comportamiento de los contactos bajo diferentes condiciones de operación
- RA43 Conocimiento de los ensayos más comunes en tribología

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

La palabra "Tribología" se introdujo en la década de los 60, como la ciencia y la ingeniería de superficies de rozamiento. Incluye el estudio y la aplicación de los principios de la fricción, el desgaste y la lubricación. Por lo tanto, la tribología es de naturaleza multidisciplinar, y está estrechamente relacionada con la física, el análisis y diseño de máquinas, y la tecnología de materiales, entre otras disciplinas. En los últimos años, la investigación en tribología ha alcanzado una fase muy avanzada desde un punto de vista teórico y experimental, con aplicación a muchos problemas industriales, por ejemplo, la industria del automóvil: cada automóvil presenta aproximadamente dos mil contactos tribológicos.

5.2. Temario de la asignatura

- 1. Introducción
 - 1.1. Concepto de la tribología
 - 1.2. Historia de la Tribología
 - 1.3. Importancia Industrial
- 2. Contacto entre superficies
 - 2.1. Superficies tribológicas
 - 2.2. Geometría de contacto
 - 2.3. Tensiones superficiales
- 3. Fricción
 - 3.1. Adhesión, adherencia y deslizamiento
 - 3.2. Leyes de la fricción
 - 3.3. Medida de la fricción
- 4. Desgaste
 - 4.1. Conceptos generales sobre el desgaste
 - 4.2. Tipos de desgaste
 - 4.3. Predicción del desgaste
- 5. Introducción a la lubricación
 - 5.1. Tipos y propiedades de los lubricantes
 - 5.2. Modelos de comportamiento reológico de los lubricantes
 - 5.3. Regímenes de lubricación
- 6. Lubricación hidrostática
 - 6.1. Introducción a la lubricación hidrostática
 - 6.2. Ejemplos de empleo de la lubricación hidrostática
- 7. Lubricación hidrodinámica
 - 7.1. Teoría de Reynolds
 - 7.2. Contactos superficiales de tipo plano inclinado
- 8. Cojinetes de película hidrodinámica

- 8.1. Cojinetes axiales de segmentos
- 8.2. Cojinetes cilíndricos lisos
- 8.3. Cojinetes cilíndricos de segmentos pivotantes
- 8.4. Estudio de casos prácticos
- 9. Lubricación elastohidrodinámica
 - 9.1. Límites de aplicación de la teoría Hidrodinámica a contactos lineales y puntuales
 - 9.2. Planteamiento del problema elastohidrodinámico y termo-elastohidrodinámico.
 - 9.3. Soluciones analíticas aproximadas para contactos puntuales y lineales
 - 9.4. Soluciones numéricas para contactos puntuales y lineales
 - 9.5. Estudio de casos prácticos
- 10. Equipos de ensayo
 - 10.1. Características generales de los equipos
 - 10.2. Parámetros de control y resultados de medida
 - 10.3. Tipología de equipos existentes y tendencias actuales
 - 10.4. Aplicación de equipos de ensayo para caracterizar fallos en sistemas mecánicos (fatiga superficial, desgaste...)

6. Cronograma

CAMPUS DE EXCELENCIA INTERNACIONAL

6.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Otra actividad presencial	Actividades de evaluación
1	Introducción a la tribología Duración: 02:00 LM: Actividad del tipo Lección Magistral			
2	Fricción y desgaste Duración: 02:00 LM: Actividad del tipo Lección Magistral			Realización y entrega de problema sobre fricción y desgaste. TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Duración: 04:00
3	Contacto entre superficies tribológicas Duración: 02:00 LM: Actividad del tipo Lección Magistral			
4	Contacto entre superficies tribológicas Duración: 02:00 LM: Actividad del tipo Lección Magistral			Realización y entrega de problema sobre contactos tribológicos. TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Duración: 04:00
5	Contacto entre superficies tribológicas Duración: 02:00 LM: Actividad del tipo Lección Magistral			Realización y entrega de problema sobre contactos tribológicos. TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Duración: 04:00
6	Introducción a la lubricación Duración: 02:00 LM: Actividad del tipo Lección Magistral			Realización y entrega de problemas sobre lubricantes TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Duración: 04:00
7	Lubricación hidrostática Duración: 02:00 LM: Actividad del tipo Lección Magistral			
8	Lubricación hidrodinámica Duración: 02:00 LM: Actividad del tipo Lección Magistral			Realización y entrega de problema sobre lubricación hidrodinámica. TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Duración: 04:00
9	Lubricación hidrodinámica Duración: 02:00 PR: Actividad del tipo Clase de Problemas			Realización y entrega de problema sobre lubricación hidrodinámica. TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Duración: 04:00
10	Lubricación hidrodinámica Duración: 02:00 PR: Actividad del tipo Clase de Problemas			Realización y entrega de caso sobre lubricación hidrodinámica. TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Duración: 06:00

11	Cálculo numérico aplicado a la hidrodinámica Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio Lubricación elastohidrodinámica Duración: 02:00 LM: Actividad del tipo Lección Magistral		Realización y entrega de caso sobre lubricación elastohidrodinámica. TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final
	Lubricación alectabidrodinómic		Duración: 06:00
13	Lubricación elastohidrodinámica Duración: 02:00 LM: Actividad del tipo Lección Magistral		Realización y entrega de problema sobre lubricación elastohidrodinámica. TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Duración: 04:00
1	Cálculo numerico aplicado a lubricación elastohidrodinámica Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		
15	Ejemplos de aplicación y ensayos Duración: 02:00 LM: Actividad del tipo Lección Magistral		Realización y entrega de problema sobre ejemplos de aplicación. TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Duración: 06:00
16	Ejemplos de aplicación y ensayos Duración: 02:00 LM: Actividad del tipo Lección Magistral		
17			Examen final EX: Técnica del tipo Examen Escrito Evaluación sólo prueba final Duración: 02:00

Las horas de actividades formativas no presenciales son aquellas que el estudiante debe dedicar al estudio o al trabajo personal.

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

* El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
2	Realización y entrega de problema sobre fricción y desgaste.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7/10	CG 1 CE2 CG 3
4	Realización y entrega de problema sobre contactos tribológicos.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7/10	CG 8 CE2 CG 1
5	Realización y entrega de problema sobre contactos tribológicos.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7/10	CG 8 CE2 CG 1
6	Realización y entrega de problemas sobre lubricantes	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7/10	CG 8 CE2 CG 1
8	Realización y entrega de problema sobre lubricación hidrodinámica.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7/10	CE2 CG 1
9	Realización y entrega de problema sobre lubricación hidrodinámica.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7/10	CE2 CG 1
10	Realización y entrega de caso sobre lubricación hidrodinámica.	TI: Técnica del tipo Trabajo Individual	No Presencial	06:00	10%	7/10	CG 2 CG 7 CE1 CG 1 CG 3
12	Realización y entrega de caso sobre lubricación elastohidrodinámica.	TI: Técnica del tipo Trabajo Individual	No Presencial	06:00	10%	7/10	CG 2 CG 7 CE1 CG 1 CG 3

13	Realización y entrega de problema sobre lubricación elastohidrodinámica.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7 / 10	CE9 CE2 CG 1
15	Realización y entrega de problema sobre ejemplos de aplicación.	TI: Técnica del tipo Trabajo Individual	No Presencial	06:00	10%	7/10	CE1 CE9 CG 9 CE2 CG 1 CG 3

7.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
2	Realización y entrega de problema sobre fricción y desgaste.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7 / 10	CG 1 CE2 CG 3
4	Realización y entrega de problema sobre contactos tribológicos.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7 / 10	CG 8 CE2 CG 1
5	Realización y entrega de problema sobre contactos tribológicos.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7 / 10	CG 8 CE2 CG 1
6	Realización y entrega de problemas sobre lubricantes	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7 / 10	CG 8 CE2 CG 1
8	Realización y entrega de problema sobre lubricación hidrodinámica.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7/10	CE2 CG 1
9	Realización y entrega de problema sobre lubricación hidrodinámica.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7/10	CE2 CG 1
10	Realización y entrega de caso sobre lubricación hidrodinámica.	TI: Técnica del tipo Trabajo Individual	No Presencial	06:00	10%	7/10	CG 2 CG 7 CE1 CG 1 CG 3
12	Realización y entrega de caso sobre lubricación elastohidrodinámica.	TI: Técnica del tipo Trabajo Individual	No Presencial	06:00	10%	7/10	CG 2 CG 7 CE1 CG 1 CG 3

13	Realización y entrega de problema sobre lubricación elastohidrodinámica.	TI: Técnica del tipo Trabajo Individual	No Presencial	04:00	10%	7 / 10	CE9 CE2 CG 1
15	Realización y entrega de problema sobre ejemplos de aplicación.	TI: Técnica del tipo Trabajo Individual	No Presencial	06:00	10%	7/10	CE1 CE9 CG 9 CE2 CG 1 CG 3
17	Examen final	EX: Técnica del tipo Examen Escrito	Presencial	02:00	100%	5/10	

7.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

7.2. Criterios de evaluación

Durante el desarrollo del curso se proponen trabajos individuales a realizar y entregar por los alumnos en un plazo de una semana. Una calificación media de los trabajos igual o superior a 5 libera del examen final. En caso contrario, el examen final tendrá un peso del 100% en la nota.

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
		Ejemplos de diferentes tipos de cojinetes,
Taller mecánico	Equipamiento	engranajes y otros sistemas lubricados,
Tallel Mecanico	Equiparmento	ejemplos de elementos con diversos tipos de
		fallos.
		Principles of Tribology, J. Halling, Ed.
		Scholium Intl.
Libros de referencia	Piblio grofía	Engineering Tribology, J. Williams, Ed.
Libros de referencia	Bibliografía	Cambridge University Press
		Engineering Tribology, G.W.Stachowiak,
		A.W.Batchelor, Ed. Elsevier
		Introduction to Tribology, B. Bhushan, Ed.
		Wiley
Librar de consulta	Diblio grafía	Fundamentals of fluid film lubrication, B.J.
Libros de consulta	Bibliografía	Hamrock, Ed. McGraw-Hill
		High pressure rheology for quantitative
		elastohydrodynamics, S. Bair, Ed. Elsevier
		Sala de ordenadores con software Matlab,
		así como de programas de elaboración
Sala de ordenadores	Bibliografía	propia, que permiten la resolución numérica
		del problema de lubricación hidrodinámica y
		elastohidrodinámica.