
PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

53001047 - Diseño avanzado de sistemas de energia solar

PLAN DE ESTUDIOS

05AX - Master Universitario En Ingenieria De La Energia

CURSO ACADÉMICO Y SEMESTRE

2018/19 - Segundo semestre

Índice

Guía de Aprendizaje

CAMPUS DE EXCELENCIA INTERNACIONAL

1. Datos descriptivos	1
2. Profesorado	
3. Conocimientos previos recomendados	
4. Competencias y resultados de aprendizaje	2
5. Descripción de la asignatura y temario	4
6. Cronograma	6
7. Actividades y criterios de evaluación	8
8. Recursos didácticos	11

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	53001047 - Diseño avanzado de sistemas de energia solar			
No de créditos	3 ECTS			
Carácter	Obligatoria			
Curso	Primer curso			
Semestre	Segundo semestre			
Período de impartición	Febrero-Junio			
Idioma de impartición	Castellano			
Titulación	05AX - Master universitario en ingenieria de la energia			
Centro en el que se imparte	05 - Escuela Tecnica Superior de Ingenieros Industriales			
Curso académico	2018-19			

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Julio Amador Guerra (Coordinador/a)	A128C ETSIDI	julio.amador@upm.es	Sin horario.
Juan Mario Garcia De Maria	A-325 ETSIDI	juanmario.garcia@upm.es	Sin horario.

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

- Energia solar termica y fotovoltaica

3.2. Otros conocimientos previos recomendados para cursar la asignatura

- Energía solar fotovoltaica. Energía solar térmica. Transferencia de calor y materia. Ingeniería térmica y de fluidos.

4. Competencias y resultados de aprendizaje

4.1. Competencias

- CE 26 Evaluar el potencial energético de las fuentes de energía renovable: radiación solar, recurso eólico, recurso hidráulico, potencial energético de la biomasa, recurso energético marino, etc.; a partir de las bases de datos meteorológicas
- CE 27 Diseñar sistemas de energías renovables, para aplicaciones diversas y complejas, dentro de contextos multidisciplinares analizando de forma crítica las implicaciones ambientales
- CE 28 Analizar el comportamiento energético de los sistemas de energías renovables determinando y aplicando criterios innovadores de optimización energética, económica y ambiental
- CE 29 Evaluar las consecuencias ambientales de los procesos e instalaciones de energías renovables para la selección de las mejores tecnologías disponibles
- CE 30 Aplicar metodologías de diseño, simulación y análisis de los componentes y sistemas de energías renovables: solares, eólicos, hidráulicos, de biomasa, de energías marinas y otras energías renovables; para contribuir a su desarrollo tecnológico y a su competitividad con otras tecnologías energéticas

- CE 32 Dirigir la ejecución, verificación, puesta en marcha, mantenimiento y desmantelamiento de instalaciones de energías renovables del máximo nivel de complejidad, configurando y coordinando los equipos humanos necesarios
- CG 1 Aplicar conocimientos de ciencias y tecnologías avanzadas a la práctica profesional o investigadora de la Ingeniería Energética.
- CG 2 Poseer capacidad para diseñar, desarrollar, implementar, gestionar y mejorar productos, sistemas y procesos en los distintos ámbitos energéticos, usando técnicas analíticas, computacionales o experimentales avanzadas
- CG 3 Aplicar los conocimientos adquiridos para identificar, formular y resolver problemas en entornos nuevos o poco conocidos dentro de contextos multidisciplinares de la Ingeniería Energética.
- CG 4 Ser capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CG 5 Comprender el impacto de la Ingeniería Energética en el medio ambiente, el desarrollo sostenible de la sociedad y la importancia de trabajar en un entorno profesional y responsable.
- CG 6. Saber comunicar los conocimientos y conclusiones (y los conocimientos y razones últimas que las sustentan), de forma oral, escrita y gráfica, a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CG 7 Poseer habilidades de aprendizaje que le permitan continuar estudiando, de un modo que habrá de ser en gran medida autodirigido o autónomo, para su adecuado desarrollo profesional o como investigador
- CG 8 Incorporar nuevas tecnologías y herramientas avanzadas de la Ingeniería Energética en sus actividades profesionales o investigadoras.
- CG 9. Capacidad de trabajar en un contexto internacional (entorno bilingüe inglés-castellano).

4.2. Resultados del aprendizaje

- RA112 Aplicar métodos, los procedimientos y las herramientas para modelar, simular y analizar sistemas de aprovechamiento de energía solar
- RA111 Analizar modelos físicos de radiación solar en la atmósfera terrestre y su influencia en el diseño de sistemas para el aprovechamiento de la energía solar
- RA114 Diseñar componentes y sistemas para aprovechamientos energéticos más eficientes y/o alternativos de la energía solar
- RA113 Analizar nuevos materiales susceptibles de ser utilizados en sistemas de aprovechamiento de energía solar térmica y fotovoltaica
- RA115 Desarrollar trabajos de investigación en innovación en aspectos tecnológicos relacionados con la energía solar.

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

El objetivo de la asignatura es el análisis avanzado de bases de datos de radiación solar y el modelado y simulación de sistemas

solares fotovoltaicos y térmicos de baja temperatura.

5.2. Temario de la asignatura

CAMPUS DE EXCELENCIA

- 1. Análisis de datos de radiación solar
- 2. Cálculo de la radiación solar sobre planos incinados
- 3. Generación de series sintéticas de radiación solar
- 4. Modelado del generador fotovoltaico y del inversor solar
- 5. Análisis energético de sistemas fotovoltaicos conectados a red
- 6. Monitorización de sistemas fotovoltaicos
- 7. Informes energéticos y análisis gráfico de sistemas fotovoltaicos
- 8. Dimensionado avanzado y simulación de sistemas solares térmicos de baja temperatura
- 9. Refrigeración solar
- 10. Aplicaciones avanzadas de solar térmica

6. Cronograma

6.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Otra actividad presencial	Actividades de evaluación
1	Tema 1 Duración: 02:00 LM: Actividad del tipo Lección Magistral			
2	Tema 2 Duración: 01:00 LM: Actividad del tipo Lección Magistral	Tema 2 Duración: 01:00 PL: Actividad del tipo Prácticas de Laboratorio		
3		Tema 3 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		
4	Tema 4 Duración: 02:00 LM: Actividad del tipo Lección Magistral			
5		Tema 4 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		
6		Tema 4 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		
7		Temas 5 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		
8		Tema 6 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		
9	Tema 7 Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
10		Tema 7 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		Tarea temas 1 al 7 TG: Técnica del tipo Trabajo en Grupo Evaluación continua Duración: 02:00
11	Tema 8 Duración: 02:00 LM: Actividad del tipo Lección Magistral			
12		Tema 9 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		

13	Tema 10 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio	
14		Tarea temas 8 al 10 Pl: Técnica del tipo Presentación Individual Evaluación continua Duración: 02:00
15		
16		Examen sólo prueba final EX: Técnica del tipo Examen Escrito Evaluación sólo prueba final Duración: 03:30
17		

Las horas de actividades formativas no presenciales son aquellas que el estudiante debe dedicar al estudio o al trabajo personal.

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

* El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
10	Tarea temas 1 al 7	TG: Técnica del tipo Trabajo en Grupo	No Presencial	02:00	70%	5/10	CG 1 CG 2 CG 8 CG 4 CG 3 CG 9. CE 27 CG 6. CE 32 CE 30 CE 29 CG 7 CG 5 CE 28 CE 28 CE 26
14	Tarea temas 8 al 10	PI: Técnica del tipo Presentación Individual	Presencial	02:00	30%	5/10	CG 8 CG 4 CG 1 CG 3 CG 9. CG 2 CE 27 CG 6. CE 32 CE 30 CE 29 CG 7 CG 5 CE 28 CE 28

7.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
-----	-------------	-----------	------	----------	--------------------	-------------	------------------------

CAMPUS DE EXCELENCIA INTERNACIONAL

16	Examen sólo prueba final	EX: Técnica del tipo Examen Escrito	Presencial	03:30	100%	5/10	CG 1 CG 2 CG 8 CG 4 CG 3 CG 9. CE 27 CG 6. CE 32 CE 30 CE 29 CG 7 CG 5 CE 28 CE 28 CE 26
----	--------------------------	--	------------	-------	------	------	--

7.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

7.2. Criterios de evaluación

EVALUACIÓN CONTINUA

Se divide en dos partes:

Tarea solar fotovoltaica: ejercicios propuestos por los profesores de la asignatura durante el desarrollo de las clases correspondientes a sistemas fotovoltaicos, temas 1 a 7. Debe realizarse un informe y una presentación.

Tarea solar térmica: ejercicios propuestos por los profesores de la asignatura durante el desarrollo de las clases correspondientes a sistemas fotovoltaicos: los temas 8 a 10. Debe realizarse un informe y una presentación.

Nota asignatura = 70 % Tarea solar fotovoltaica + 30 % Tarea solar térmica

Requisitos para aprobar la asignatura

Tareas: nota mínima en cada tarea de 5 puntos sobre 10

EVALUACIÓN SÓLO PRUEBA FINAL

Examen de teoría y problemas de los contenidos de la asignatura en la fecha establecida por jefatura de estudios

Nota asignatura = 100 % Nota Examen

Requisitos: no debe haber ninguna pregunta teórica o problema con menos de 3 puntos sobre 10

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
SISTEMA DE SIMULACIÓN	Recursos web	http://www.sisifo.info/
FOTOVOLTAICO	Necuisos web	Tittp://www.sisilo.iiilo/
Luque A. y Hegedus S. (2003).		
Handbook of photovoltaic science	Bibliografía	
and engineering. Editorial: Wiley.		
Eiker, U. (2001). Solar Technologies	Dibliografía	
for Buildings. Editorial: Wiley.	Bibliografía	