PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

E.T.S. de Ingenieros Industriales

ASIGNATURA

53001211 - Automatizacion Y Control

PLAN DE ESTUDIOS

05AZ - Master Universitario En Ingenieria Industrial

CURSO ACADÉMICO Y SEMESTRE

2020/21 - Primer semestre

Índice

Guía de Aprendizaje

UNIVERSIDAD POLITÉCNICA DE MADRID

1. Datos descriptivos	1
2. Profesorado	1
3. Conocimientos previos recomendados	2
4. Competencias y resultados de aprendizaje	3
5. Descripción de la asignatura y temario	5
6. Cronograma	6
7. Actividades y criterios de evaluación	8
8. Recursos didácticos	11
9. Otra información	12

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	53001211 - Automatizacion y Control		
No de créditos	3 ECTS		
Carácter	Obligatoria		
Curso	Primer curso		
Semestre	Primer semestre		
Período de impartición	Septiembre-Enero		
Idioma de impartición	Castellano		
Titulación	05AZ - Master Universitario en Ingenieria Industrial		
Centro responsable de la titulación	05 - Escuela Tecnica Superior De Ingenieros Industriales		
Curso académico	2020-21		

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Jose Maria Sebastian Zuñiga	Automática	jose.sebastian@upm.es	Sin horario. A coordinar con el profesor
Manuel Ferre Perez	Automatica	m.ferre@upm.es	Sin horario. A coordinar con el profesor

Roque Jacinto Saltaren Pazmiño (Coordinador/a)	Automatica	roquejacinto.saltaren@upm. es	Sin horario. A coordinar con el profesor
Claudio Rossi	Automatica	claudio.rossi@upm.es	Sin horario. A coordinar con el profesor
Paloma De La Puente Yusty	Automática	paloma.delapuente@upm.es	Sin horario. A coordinar con el profesor
Daniel Galan Vicente	Automática	daniel.galan@upm.es	Sin horario. A coordinar con el profesor

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

2.3. Profesorado externo

Nombre	Correo electrónico	Centro de procedencia
Alejandro Rodriguez Barroso	alejandro.rbarroso@upm.es	ETSI Industriales

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

El plan de estudios Master Universitario en Ingenieria Industrial no tiene definidas asignaturas previas recomendadas para esta asignatura.

3.2. Otros conocimientos previos recomendados para cursar la asignatura

- Asignatura básica de Control de Sistemas Lineales

4. Competencias y resultados de aprendizaje

4.1. Competencias

- (a) APLICA. Habilidad para aplicar conocimientos científicos, matemáticos y tecnológicos en sistemas relacionados con la práctica de la ingeniería.
- (c) DISEÑA. Habilidad para diseñar un sistema, componente o proceso que alcance los requisitos deseados teniendo en cuenta restricciones realistas tales como las económicas, medioambientales, sociales, políticas, éticas, de salud y seguridad, de fabricación y de sostenibilidad.
- (e) RESUELVE. Habilidad para identificar, formular y resolver problemas de ingeniería.
- CB06 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
- CB07 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios
- CE08 Capacidad para diseñar y proyectar sistemas de producción automatizados y control avanzado de procesos.
- CG01 Tener conocimientos adecuados de los aspectos científicos y tecnológicos de: métodos matemáticos, analíticos y numéricos en la ingeniería, ingeniería eléctrica, ingeniería energética, ingeniería química, ingeniería mecánica, mecánica de medios continuos, electrónica industrial, automática, fabricación, materiales, métodos cuantitativos de gestión, informática industrial, urbanismo, infraestructuras, etc.
- CG02 Proyectar, calcular y diseñar productos, procesos, instalaciones y plantas.
- CG06 Gestionar técnica y económicamente proyectos, instalaciones, plantas, empresas y centros tecnológicos.
- CG08 Aplicar los conocimientos adquiridos y resolver problemas en entornos nuevos o poco conocidos dentro de contextos más amplios y multidisciplinares.

4.2. Resultados del aprendizaje

- RA145 Modelado y simulación de sistemas de eventos discretos
- RA144 Modelado y simulación de sistemas continuos
- RA119 Valoración y validación del resultado obtenido.
- RA179 Conocer la instrumentación del control industrial
- RA178 Utilización de estructuras adecuadas de control avanzado
- RA180 Evaluar correctamente los efectos de las valvulas dentro de un bucle de control
- RA146 Realización de trabajos prácticos sobre simulación de sistemas
- RA129 Utilizan los programas o el instrumental de forma avanzada
- RA107 Aplicación principios básicos científicos e ingenieriles para analizar lo que ocurre en un sistema o proceso con coherencia de los resultados (el profesor no indica ni propone los principios).
- RA176 Obtención y utilización adecuada de modelos lineales de sistemas ingenieriles
- RA177 Diseño de controladores industriales en sistemas SISO
- RA123 Utiliza los recursos gráficos y los medios necesarios para comunicar de forma efectiva la información.
- RA118 Ejecutar el procedimiento previsto. Valoración y validación del resultado obtenido.
- RA181 Diseñar Maquinas de Estado y Transiciones para Automatización
- RA108 El alumno analiza los resultados obtenidos del experimento, extrae conclusiones a partir de ellos y formula explicaciones.

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

Los objetivos centrales de la asignatura son:

- Aprender el manejo de una herramienta industrial de control de procesos, como Matlab y Simulink
- Obtener empiricamente un modelo lineal como aproximación a un sistema real, entendiendo su utilidad y limitaciones
 - Diseñar y ajustar reguladores industriales, entendiendo sus ventajas y limitaciones
- Evaluar la conveniencia de usar estructuras de control avanzado tipo anti wind-up, cascada y anticipativo y predictores, así como su utilización y cálculo correctos
 - Utilización de una maquina de estado y de la guía GEMMA para automatización industrial
- Resolver problemas de ingeniería en el ambito del control y la utomatización

5.2. Temario de la asignatura

- 1. Introducción al Control de Procesos.
- 2. Modelado de Sistemas y especificaciones de control
- 3. Control Regulatorio Básico.
- 4. Control avanzado de procesos
- 5. Introducción a la automatización
- 6. Diseño de sistemas de automatización

6. Cronograma

6.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Tele-enseñanza	Actividades de evaluación
1		· · · · · · · · · · · · · · · · · · ·	Introducción al control de procesos y modelado de sistemas Duración: 02:00	
			LM: Actividad del tipo Lección Magistral Modelado de Sistemas y especificaciones de control-1	
2			Duración: 02:00 LM: Actividad del tipo Lección Magistral	
3			Modelado de Sistemas y especificaciones de control-2 Duración: 02:00 LM: Actividad del tipo Lección Magistral	
4			Modelado de Sistemas y especificaciones de control-3 Duración: 02:00 LM: Actividad del tipo Lección Magistral	
5			Control Regulatorio básico-1 Duración: 02:00 LM: Actividad del tipo Lección Magistral	Tarea-1. Modelado de procesos de control ET: Técnica del tipo Prueba Telemática Evaluación continua No presencial Duración: 01:00
6			Control Regulatorio básico-2 Duración: 02:00 LM: Actividad del tipo Lección Magistral	
7			Control regulatorio básico-3 Duración: 02:00 LM: Actividad del tipo Lección Magistral	Tarea-2. Control básico ET: Técnica del tipo Prueba Telemática Evaluación continua No presencial Duración: 01:00
8			Control avanzado-1 Duración: 02:00 LM: Actividad del tipo Lección Magistral	PEC-1. Modelado y control básico ET: Técnica del tipo Prueba Telemática Evaluación continua No presencial Duración: 02:00
9			Control Avanzado-2 Duración: 02:00 LM: Actividad del tipo Lección Magistral	
10			Control Avanzado-3, control anticipativo, grandes retardos Duración: 02:00 LM: Actividad del tipo Lección Magistral	Tarea-3. Control avanzado ET: Técnica del tipo Prueba Telemática Evaluación continua No presencial Duración: 01:00

11	Sistema de Producción Automatizados Duración: 02:00 LM: Actividad del tipo Lección Magistral Sistema de Producción Automatizados Duración: 02:00 LM: Actividad del tipo Lección Magistral Sistema de Producción Automatizados Duración: 02:00	PEC-2. Control avanzado ET: Técnica del tipo Prueba Telemática Evaluación continua No presencial Duración: 02:00 Tarea-4. Sistemas de producción automatizados
13	LM: Actividad del tipo Lección Magistral	ET: Técnica del tipo Prueba Telemática Evaluación continua No presencial Duración: 01:00
14	Sistema de Producción Automatizados Duración: 02:00 LM: Actividad del tipo Lección Magistral	PEC-3, Sistemas de producción automatizados ET: Técnica del tipo Prueba Telemática Evaluación continua No presencial Duración: 02:00
15		
16		
17		Examen Final EX: Técnica del tipo Examen Escrito Evaluación continua Presencial Duración: 02:00 Examen solo prueba final. Estará formado por una parte escrita (50%) y una parte en computador (50%) EX: Técnica del tipo Examen Escrito Evaluación sólo prueba final Presencial Duración: 03:00

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

* El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
5	Tarea-1. Modelado de procesos de control	ET: Técnica del tipo Prueba Telemática	No Presencial	01:00	5%	4/10	CG01 (a)
7	Tarea-2. Control básico	ET: Técnica del tipo Prueba Telemática	No Presencial	01:00	5%	4/10	CG01 (a) CE08
8	PEC-1. Modelado y control básico	ET: Técnica del tipo Prueba Telemática	No Presencial	02:00	10%	4/10	CE08 CG01 (a)
10	Tarea-3. Control avanzado	ET: Técnica del tipo Prueba Telemática	No Presencial	01:00	5%	4/10	(a) CE08 CG01
11	PEC-2. Control avanzado	ET: Técnica del tipo Prueba Telemática	No Presencial	02:00	10%	4/10	CG08 CG01 (a)
13	Tarea-4. Sistemas de producción automatizados	ET: Técnica del tipo Prueba Telemática	No Presencial	01:00	5%	4/10	(a) CE08 CG01
14	PEC-3, Sistemas de producción automatizados	ET: Técnica del tipo Prueba Telemática	No Presencial	02:00	10%	4/10	(a) (c) CE08
17	Examen Final	EX: Técnica del tipo Examen Escrito	Presencial	02:00	50%	4/10	CG06 CG02 CB07 CB06 (e) CG08 CG01 (a) (c)

7.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
17	Examen solo prueba final. Estará formado por una parte escrita (50%) y una parte en computador (50%)	EX: Técnica del tipo Examen Escrito	Presencial	03:00	100%	5/10	CG06 CG02 CB07 CB06 (e) CG08 CG01 (a) (c) CE08

7.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

7.2. Criterios de evaluación

El alumno puede optar por cualquiera de los dos métodos de evaluación, debiendo indicarlo a través de la encuesta disponible en Moodle en el plazo establecido. Si no se rellena dicha encuesta se entiende que el alumno ha optado por la solo prueba final (evaluación única)

Debido al estado actual de la nueva normalidad, todas la evaluaciones excepto el examen final de enero, serán realizadas de manera telemática (en linea), por lo que el estudiante debe prever las condiciones suficientes y necesarias (conexión remota, cámara, entorno verificable del sitio de la evaluación, etc.) para que su evaluación sea eficaz. Cualquier aspecto que afecte la evaluación telemática, considerando además las normativas expedidas por la autoridades académicas de la universidad en relación a las evaluaciones en linea, exámenes, etc., deberá ser comunicado con suficiente antelación al coordinador de la asignatura.

La evaluación continua consiste en:

• 30% pruebas de evaluación continua: 3 PEC's (La nota mínima de este 30% será de 4,00, que resulta de la media de las tres PEC's)

- 20% Evaluación continua: 4 Tareas (La nota mínima de este 20% será de 4,00, que resulta de la media de la nota de las 4 tareas)
- 50% Examen final de Enero (nota mínima 4,0). El examen final en principio será presencial, pero dadas las circunstancias excepcionales causadas por el COVID-19, este examen podría ser realizado telemáticamente lo cual será informado oportunamente por las autoridades académicas de la universidad

La evaluación solo prueba final consiste en:

- 50% Examen final parte teórica (nota mínima 5,0). El examen final en principio será presencial, pero dadas las circunstancias excepcionales causadas por el COVID-19, este examen podría ser realizado telemáticamente lo cual será informado oportunamente por las autoridades académicas de la universidad
- 50% Examen final parte práctica en computador (nota mínima 4,0) [Nota: esta parte de la evaluación es equivalente al conjunto de las "tareas+prácticas" de la evaluación continua]. El examen final en principio será presencial, pero dadas las circunstancias excepcionales causadas por el COVID-19, este examen podría ser realizado telemáticamente lo cual será informado oportunamente por las autoridades académicas de la universidad.

La evaluación extraordinaria consiste en:

- 50% Examen final parte teórica (nota mínima 5,0)
- 50% Examen final parte práctica en computador (nota mínima 4,0) [Nota: esta parte de la evaluación es equivalente al conjunto de las "tareas+prácticas" de la evaluación continua]

Liberación de cada una de las Partes de la Evaluación

UNICAMENTE para estudiantes de evaluación continua:

La nota correspondiente a cada una de las partes obligatorias de la evaluación continua de las practicas y tareas, puede guardarse para la siguiente convocatoria **dentro del mismo curso académico** siempre y cuando dicha nota media sea igual o superior a cinco (5).

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones	
		Se encuentra: 	
		normativa, foro, diapositivas de clase,	
Pagina web en Moodle	Recursos web	ejercicios semanales propuestos, material	
		para ejercicios, enlaces de interés,	
		enunciado y material para el trabajo en grupo	
Control e Instrumentación de libros	 Bibliografía	de P.O. Castro, E.F. Camacho, Editorial	
de procesos químicos	Bibliografia	Síntesis, 1997, ISBN 84-7738-517-3 1997	
Drograma Matlah v Cimulink última		Software industrial, disponible gratis para los	
Programa Matlab y Simulink última ver. de R2020	Equipamiento	alumnos, con instrucciones de descarga en	
ver. de R2020		Moodle	
		Software para diseñar el control de procesos	
		secuenciales aplicando la guía GEMMA <br< td=""></br<>	
		/>	
GRAFCET-Studio	Recursos web	En la fecha indicada descarga la versión de	
		estudiante en este enlace: https://www.mhj-t	
		ools.com/?page=request-trial&p=Grafcet-	
		Studio; 	
Teoría de Sistemas	Bibliografía	F. Matía et altres, Ediciones ETSII-UPM	
Automatización	Bibliografía	A. Barrientos et altres, Ediciones ETSII-UPM	
Automatización de procesos	Bibliografía	P. Ponsa y R. Vilanova, Ediciones UPC <br< td=""></br<>	
mediante la guía GEMMA	Dibilografia	/>	

9. Otra información

9.1. Otra información sobre la asignatura

Los estudiantes deben utilizar la página Moodle de la asignatura, personalizada según el Grupo y/o la especialidad.

La asignatura se impartirá en base a clases magistrales de manera telemática (en linea) utilizando las aplicaciones Microsoft Teams o ZOOM. Cual de estos medios, se comunicarán con oportunamente.

La impartición de las clases magistrales en línea, implican que los estudiantes además de las trasparencias y material docente deberán poder seguir y realizar ejercicios cortos en clase usando el paquete Matlab-Simulink. Para estos efectos, los estudiantes deberán tener instalada en su ordenador la última versión de Matlab R2020.

Las tareas contaran con un guion que se dará con suficiente antelación. El estudiante debe resolver previamente cada tarea que será evaluada de manera telemática (en línea) en las fechas publicadas.

Las preguntas sobre la tarea deberán ser resueltas en un cuestionario con opciones múltiples que se realizará a través de Moodle-Exam.

De manera similar se realizarán las pruebas de evaluación continua PEC's. Las PEC's serán de mayor duración, y se basarán en una serie de cuestiones que estudiante debe descargarse para ser resueltas en el momento de la evaluación. Durante la evaluación PEC el estudiante deberá hacer uso de Simulink para resolver los problemas que así se le requieran

Los estudiantes deberán instalar en su ordenador al menos la versión R2020a de Matlab para poder realizar las tareas, ejercicios prácticos y los exámenes.

MUY IMPORTANTE. Para la parte de automatización, los estudiantes deberán descargar el software GRAFCET Studio desde este enlace: https://www.mhj-tools.com/?page=request-trial&p=Grafcet-Studio y activarlo cuando el profesor se lo indique.

El profesor dará a su grupo de clase, el programa detallado de los contenidos de la asignatura