PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

145007204 - Combustibles y Lubricantes

PLAN DE ESTUDIOS

14IA - Grado en Ingenieria Aeroespacial

CURSO ACADÉMICO Y SEMESTRE

2020/21 - Primer semestre

Índice

Guía de Aprendizaje

1. Datos descriptivos	1
2. Profesorado	1
3. Competencias y resultados de aprendizaje	2
4. Descripción de la asignatura y temario	3
5. Cronograma5.	7
6. Actividades y criterios de evaluación	ç
7. Recursos didácticos	
8. Otra información	

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	145007204 - Combustibles y Lubricantes			
No de créditos	2 ECTS			
Carácter	Obligatoria			
Curso	Cuarto curso			
Semestre	Séptimo semestre			
Período de impartición	Septiembre-Enero			
Idioma de impartición	Castellano			
Titulación	14IA - Grado en Ingenieria Aeroespacial			
Centro responsable de la titulación	14 - Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio			
Curso académico	2020-21			

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Iñigo Aguirre De Carcer Garcia	B113	inigo.aguirredecarcer@upm. es	Sin horario. Publicado en el Moodle de la asignatura
Marta Sanchez-Cabezudo Tirado	B113	marta.sanchez- cabezudo.tirado@upm.es	Sin horario. Publicado en el Moodle de la asignatura

Margarita Gonzalez Prolongo (Coordinador/a)			Sin horario.
	A271	ma prolongo@upm oo	Publicado en el
		mg.prolongo@upm.es	Moodle de la
			asignatura

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Competencias y resultados de aprendizaje

3.1. Competencias

CE34 - Conocimiento adecuado y aplicado a la Ingeniería de: los métodos de cálculo y de desarrollo de instalaciones de los sistemas propulsivos; la regulación y control de instalaciones de los sistemas propulsivos; el manejo de las técnicas experimentales, equipamiento e instrumentos de medida propios de la disciplina; los combustibles y lubricantes empleados en los motores de aviación y automoción; la simulación numérica de los procesos físico-matemáticos más significativos; los sistemas de mantenimiento y certificación de los motores aeroespaciales.

CG3 - Capacidad para identificar y resolver problemas aplicando, con creatividad, los conocimientos adquiridos

CG8 - Capacidad de integrar el respeto al medio ambiente en el desarrollo de sus actividades

3.2. Resultados del aprendizaje

RA230 - Conocimiento, compresión y aplicación de los fines de los lubricantes, y de los tipos de lubricantes empleados en los motores de aviación, automoción y aerorreactores, así como de las especificaciones para un uso correcto de los mismos.

RA229 - Conocimiento, compresión y aplicación de los tipos de gasolinas empleados en los motores de aviación y automoción, de los combustibles para aerorreactores y de los combustibles para motores Diesel, así como de las especificaciones para un uso correcto de los mismos.

4. Descripción de la asignatura y temario

4.1. Descripción de la asignatura

Esta asignatura tiene como objetivo que el estudiante adquiera conocimientos básicos de los combustibles y en más profundidad para combustibles de motores de aviación y automoción.

Se estudian los procesos de combustión realizando los cálculos termo-químicos. Se estudian las propiedades de los combustibles y lubricantes para poder seleccionarlos según la aplicación. Se pretende entender las especificaciones que deben cumplir combustibles y lubricantes en sus aplicaciones.

4.2. Temario de la asignatura

- 1. COMBUSTIBLES ORIGEN, COMPOSICIÓN Y CARACTERÍSTICAS GENERALES.
 - 1.1. Introducción: Definición y clasificación combustibles
 - 1.2. Origen: combustibles fósiles y biocombustibles
 - 1.3. Hidrocarburos. Estructura y propiedades
 - 1.4. Procesos de conversión de los hidrocarburos.
 - 1.5. Compuestos oxigenados, sulfurados y nitrogenados
 - 1.6. Composición y características de los combustibles sólidos: carbón
 - 1.7. Composición y características de los combustibles gaseosos: gas natural y gases licuados
- 2. COMBUSTIBLES LÍQUIDOS. COMBUSTIBLES DERIVADOS DEL PETRÓLEO.
 - 2.1. Petróleo crudo: composición y tipos
 - 2.2. Destilación fraccionada
 - 2.3. Unidades principales en una refinería moderna
 - 2.4. Productos petrolíferos finales
 - 2.5. Combustibles para aviación: tipos, composición y propiedades
 - 2.6. Selección de combustibles. especificaciones
- 3. REACCIÓN DE COMBUSTIÓN
 - 3.1. Introducción
 - 3.2. Calor de combustión. Poder calorífico

- 3.3. Cálculo del poder calorífico
- 3.4. Mezclas combustible-aire: estequiometría, mezcla pobre y rica. Límites de inflamabilidad
- 3.5. Balances energéticos: Temperatura final de combustión
- 3.6. Gases de escape
- 4. VOLATILIDAD.
 - 4.1. Presión de vapor de una mezcla
 - 4.2. Curvas de destilación
 - 4.3. Presión de vapor Reid
 - 4.4. Volatilidad
 - 4.5. Problemas relacionados con la volatilidad. Tapón de vapor, formación de hielo
- 5. GASOLINAS.
 - 5.1. Clasificación, composición y propiedades
 - 5.2. Propiedades antidetonantes. Medidas de la detonación. Índice de octano
 - 5.3. Variables que afectan al I.O.
 - 5.4. Gasolinas sin plomo. Catalizadores
 - 5.5. Gasolinas de aviación
 - 5.6. Especificaciones de las gasolinas
 - 5.7. Aditivos de las gasolinas
 - 5.8. Diferencias que presentan los alcoholes como combustibles alternativos de las gasolinas
 - 5.9. Ventajas e inconvenientes de la mezcla gasolina- alcohol. . Ensayos ASTM para gasolinas de aviación

6. COMBUSTIBLES PARA AERORREACTORES

- 6.1. Tipos de combustibles para aerorreactores: querosenos y de amplio corte
- 6.2. Propiedades de los combustibles para aerorreactores: energía específica y densidad de energía, viscosidad, punto de congelación, volatilidad
- 6.3. Propiedades de los combustibles para aerorreactores: punto de inflamación, temperatura de autoignición, estabilidad térmica
- 6.4. Propiedades de los combustibles para aerorreactores: conductividad eléctrica, agua en el combustible, contaminación microbiana
- 6.5. Diferencias y especificaciones de combustibles para aviación civil y militar

- 6.6. Aditivos
- 6.7. Ensayos ASTM para querosenos de aviación. Querosenos sintéticos: procesos GLT síntesis Fischer-Tropsch, mezclas de combustibles
- 6.8. Combustibles para misiles

7. COMBUSTIBLES PARA MOTORES DIESEL

- 7.1. Combustibles Diesel: proceso de combustión
- 7.2. Propiedades. Tipos
- 7.3. Número de Cetano (I.C.)
- 7.4. Aditivos para combustibles Diesel
- 7.5. Biodiesel
- 7.6. Fuelóleos y gasóleos

8. LUBRICANTES Y LUBRICACIÓN

- 8.1. Tribología
- 8.2. Desgaste. Factores que influyen en el desgaste
- 8.3. Fricción: leyes y tipos
- 8.4. Coeficientes de fricción
- 8.5. Objetivo de la lubricación y función de los lubricantes
- 8.6. Tipos de lubricación: límite, mixta elasto-hidrodinámica e hidrodinámica
- 8.7. Clasificación de los lubricantes

9. PROPIEDADES DE LOS LUBRICANTES LÍQUIDOS

- 9.1. Lubricantes líquidos
- 9.2. Elaboración de los lubricantes a partir del petróleo. Refino de los aceites lubricantes
- 9.3. Viscosidad. Índice de viscosidad
- 9.4. Punto de fluidez. Punto de congelación
- 9.5. Punto de inflamación
- 9.6. Índice de acidez y basicidad
- 9.7. Tendencia a la formación de carbón
- 9.8. Aditivos anti desgaste y extrema presión
- 9.9. Aditivos para mejorar: la viscosidad, el punto de congelación, la untuosidad, poder detergente, la

resistencia a la oxidación y degradación

- 9.10. Clasificación de los aceites lubricantes
- 9.11. Especificaciones de aceites para motores de aviación

10. LUBRICANTES SÓLIDOS Y GRASAS

- 10.1. Lubricantes sólidos: propiedades y utilización
- 10.2. Grasas lubricantes: composición
- 10.3. Comportamiento tixotrópico y reopéctico
- 10.4. Ventajas y desventajas de la lubricación por grasa
- 10.5. Aplicaciones
- 10.6. Selección de una grasa: consistencia, grado de consistencia
- 10.7. Punto de gota
- 10.8. Estabilidad mecánica y térmica
- 10.9. Comparación de aceites lubricantes, grasas lubricantes y pastas lubricantes.

5. Cronograma

5.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Tele-enseñanza	Actividades de evaluación
1			Introducción a los combustibles: origen, composición y características. Combustibles derivados del Petróleo. Temas 1 y 2 Duración: 02:00 LM: Actividad del tipo Lección Magistral	
2			Introducción a los combustibles: origen, composición y características. Combustibles derivados del Petróleo. Temas 1 y 2 Duración: 01:00 LM: Actividad del tipo Lección Magistral	
			Reacción de combustión: cálculos termoquímicos. Tema 3 LM: Lección Magistral Duración: 01:00 LM: Actividad del tipo Lección Magistral	
3			Reacción de combustión: cálculos termoquímicos. Tema 3 Duración: 01:00 LM: Actividad del tipo Lección Magistral Reacción de combustión: cálculos	
			termoquímicos. Tema 3 Duración: 01:00 PR: Actividad del tipo Clase de Problemas	
			Reacción de combustión: cálculos termoquímicos. Tema 3 Duración: 01:00 PR: Actividad del tipo Clase de Problemas	
4			Volatilidad: presión de vapor, problemas que origina. Gasolinas: propiedades especificaciones y aditivos. Temas 4 y 5 Duración: 01:00 LM: Actividad del tipo Lección Magistral	
5			Volatilidad: presión de vapor, problemas que origina. Gasolinas: propiedades especificaciones y aditivos. Temas 4 y 5 Duración: 02:00 LM: Actividad del tipo Lección Magistral	

		Volatilidad: presión de vapor, problemas	
		que origina. Gasolinas: propiedades	
		especificaciones y aditivos. Temas 4 y 5	
		Duración: 01:00	
		LM: Actividad del tipo Lección Magistral	
6		Combustibles para aerorreactores:	
		querosenos y combustibles de amplio	
		corte: propiedades y especificaciones.	
		Temas 6 y 8	
		Duración: 01:00	
		LM: Actividad del tipo Lección Magistral	
		Combustibles para aerorreactores:	
		querosenos y combustibles de amplio	
7		corte: propiedades y especificaciones.	
'		Temas 6 y 8	
		Duración: 02:00	
	 	LM: Actividad del tipo Lección Magistral	
		Combustibles para motores Diesel :	
		propiedades y especificaciones Temas 7	
8			
		Duración: 02:00	
		LM: Actividad del tipo Lección Magistral	
		Lubricantes: lubricación selección de	
		lubricantes y propiedades Temas 8, 9 y	
9		10	
		Duración: 02:00	
		LM: Actividad del tipo Lección Magistral	
		Lubricantes: lubricación selección de	Trabajo en grupo.
			TG: Técnica del tipo Trabajo en Grupo
10			Evaluación continua
			No presencial
		LM: Actividad del tipo Lección Magistral	Duración: 02:00
			Prueba presencial: examen test y
			preguntas de corrección tradicional
11			EX: Técnica del tipo Examen Escrito
			Evaluación continua
			Presencial
			Duración: 01:30
			Prueba presencial: examen test y
			preguntas de corrección tradicional
12			EX: Técnica del tipo Examen Escrito
			Evaluación sólo prueba final
			Presencial
			Duración: 01:30
13			
14	 		
15			
16			
17			

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

^{*} El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

6. Actividades y criterios de evaluación

6.1. Actividades de evaluación de la asignatura

6.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
10	Trabajo en grupo.	TG: Técnica del tipo Trabajo en Grupo	No Presencial	02:00	10%	5/10	CG8 CE34 CG3
11	Prueba presencial: examen test y preguntas de corrección tradicional	EX: Técnica del tipo Examen Escrito	Presencial	01:30	90%	5/10	CG3 CG8 CE34

6.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
12	Prueba presencial: examen test y preguntas de corrección tradicional	EX: Técnica del tipo Examen Escrito	Presencial	01:30	100%	5/10	CG3 CG8 CE34

6.1.3. Evaluación convocatoria extraordinaria

Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
Prueba presencial: examen test y preguntas de corrección tradicional	EX: Técnica del tipo Examen Escrito	Presencial	01:30	100%	5 / 10	CG3 CG8 CE34

6.2. Criterios de evaluación

EVALUACIÓN CONTINUA:

NOTA FINAL = 0,90 x nota prueba presencial + 0,10 x nota trabajo en grupo

EVALUACIÓN POR EXAMEN FINAL: CONVOCATORIA ORDINARIA:

NOTA FINAL = nota prueba presencial

EVALUACIÓN POR EXAMEN FINAL: CONVOCATORIA EXTRAORDINARIA:

NOTA FINAL = nota prueba presencial

Las pruebas presenciales constan de parte tipo test y partes con preguntas de corrección manual

7. Recursos didácticos

7.1. Recursos didácticos de la asignatura

	Nombre	Tipo	Observaciones
	"Aviation Fuels Technical Review (FTR-3)". Chevron Corporation,	Bibliografía	"Aviation Fuels Technical Review (FTR-3)".
ı	2006.		Chevron Corporation, 2006.

"Alternative Jet Fuels, Addendum 1 to Aviation Fuels Technical Review (FTR-3/A1)". Chevron Corporation, 2006.	Bibliografía	"Alternative Jet Fuels, Addendum 1 to Aviation Fuels Technical Review (FTR-3/A1)". Chevron Corporation, 2006.
"Diesel Fuels Technical Review". Chevron Corporation. 2007.	Bibliografía	"Diesel Fuels Technical Review". Chevron Corporation. 2007.
Presentaciones de las clases magistrales	Recursos web	Cargadas en el Moodle de la asignatura

8. Otra información

8.1. Otra información sobre la asignatura

En el cronograma las actividades formativas de la asignatura se han programado en tele-enseñanza aunque otros años han sido presenciales. Esto es debido a que Ordenación Académica de la E. T. S. I. A. E. ha informado que en los cursos de 3º y 4º de GIA las actividades presenciales en aula se pasan a docencia no presencial. Para realizar las actividades no presenciales se utilizarán las plataformas BlackBoard collaborate y Teams.

Comunicación entre el alumno y el profesor: Se utilizará el sistema de mensajería de la plataforma Moodle-UPM o mediante el correo electrónico institucional.

Tutorías individuales: a través de videoconferencia (Teams)

La asignatura se relaciona con el Objetivo de Desarollo Sostenible: ODS7