PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

53001359 - Ingeniería Térmica

PLAN DE ESTUDIOS

05BC - Master Universitario en Ingenieria Quimica

CURSO ACADÉMICO Y SEMESTRE

2020/21 - Segundo semestre

Índice

Guía de Aprendizaje

UNIVERSIDAD POLITÉCNICA DE MADRID

1. Datos descriptivos	1
2. Profesorado	1
3. Conocimientos previos recomendados	
4. Competencias y resultados de aprendizaje	2
5. Descripción de la asignatura y temario	
6. Cronograma	6
7. Actividades y criterios de evaluación	
8. Recursos didácticos	

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	53001359 - Ingeniería Térmica			
No de créditos	3 ECTS			
Carácter	Obligatoria			
Curso	Primer curso			
Semestre	Segundo semestre			
Período de impartición	Febrero-Junio			
Idioma de impartición	Castellano			
Titulación	05BC - Master Universitario en Ingenieria Quimica			
Centro responsable de la titulación	05 - Escuela Tecnica Superior de Ingenieros Industriales			
Curso académico	2020-21			

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Juan Manuel Gonzalez Garcia (Coordinador/a)	termotecnia	juanmanuel.gonzalez@upm. es	L - 09:15 - 13:00 M - 09:15 - 13:00 pedir cita previa por correo electrónico j mgonzalez@etsii.u pm.es el profesor dará cita de fecha y hora

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías

con el profesorado.

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

El plan de estudios Master Universitario en Ingenieria Quimica no tiene definidas asignaturas previas recomendadas para esta asignatura.

3.2. Otros conocimientos previos recomendados para cursar la asignatura

- mecánica de fluidos
- termodinamica
- transmisión de calor

4. Competencias y resultados de aprendizaje

4.1. Competencias

- CB10 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- CB7 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- CB9 Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
- CE1 Aplicar conocimientos de matemáticas, física, química, biología y otras ciencias naturales, obtenidos mediante estudio, experiencia, y práctica, con razonamiento crítico para establecer soluciones viables económicamente a problemas técnicos.
- CE2 Diseñar productos, procesos, sistemas y servicios de la industria química, así como la optimización de otros ya desarrollados, tomando como base tecnológica las diversas áreas de la ingeniería química, comprensivas de procesos y fenómenos de transporte, operaciones de separación e ingeniería de las reacciones químicas,

nucleares, electroquímicas y bioquímicas.

CE6 - Diseñar, construir e implementar métodos, procesos e instalaciones para la gestión integral de suministros y residuos sólidos, líquidos y gaseosos, en las industrias, con capacidad de evaluación de sus impactos y de sus riesgos.

4.2. Resultados del aprendizaje

- RA143 diseñar equipos de intercambio de calor
- RA67 Ser capaz de realizar la integración energética de un proceso químico
- RA63 Ser capaz de aprender y actualizar autónomamente nuevos conocimientos y técnicas
- RA110 Capacidad de preparar y exponer trabajos relacionados con el contenido de la asignatura.

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

MODULO 0:Información general de la asignatura	
MODULO 1:Intercambiadores de calor	Fundamentos constructivos :
	Diseño térmico
	Diseño hidráulico Diseño mecánico :Aplicación de los
	intercambiadores de calor a componentes especiales:
	generadores de vapor, condensadores, evaporadores
MODULO 2:Sistemas termohidráulicos	Circuitos termohidráulicos
	Generación de calor: combustibles, combustión
	Calderas.
	Producción frigorífica.
	Ciclos frigoríficos

	Técnología frigorífica Refrigerantes
MODULO 3: Transferencia de masa y energía	:Aire húmedo: Psicrometría Procesos de transferencia de calor y masa Torres de refrigeración

5.2. Temario de la asignatura

- 1. :Información general de la asignatura
- 2. intercambiadores de calor Fundamentos constructivos Tema 2:Diseño térmico Tema 3:Diseño hidráulico Tema 4 Diseño mecánico Tema 5:Aplicación de los intercambiadores de calor a componentes especiales: generadores de vapor, condensadores, evaporadores
 - 2.1. Fundamentos constructivos
 - 2.2. Diseño térmico
 - 2.3. Diseño hidráulico
 - 2.4. Problemas de intercambiadores de calor
 - 2.5. Aplicación de los intercambiadores de calor
- 3. Producción frigorífica. Ciclos frigoríficos
 - 3.1. refrigerantes
- 4. Técnología frigorífica
 - 4.1. compresores
 - 4.2. evaporadores
 - 4.3. condensadores
 - 4.4. dispositivos de expansión
 - 4.5. tuberias
- 5. psicrometria y aire acondicionado
 - 5.1. fundamentos de sicrometria
 - 5.2. procesos sicrometricos

- 5.2.1. procesos a humedad constante
- 5.2.2. procesos de humectación y deshumectación
- 5.3. aplicaciones de sicrometria: climatización en verano
- 5.4. aplicaciones de sicrometria: climatización en invierno
- 5.5. torres de enfriamiento

UNIVERSIDAD POLITÉCNICA DE MADRID

- 6. combustión y combustibles
- 7. calderas

6. Cronograma

6.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Tele-enseñanza	Actividades de evaluación
1	introducción de sistemas térmicos Duración: 02:00 LM: Actividad del tipo Lección Magistral			
2	intercambiadores de calor. diferencia temperatura media, NtU Duración: 02:00 LM: Actividad del tipo Lección Magistral			examen de teoría y problemas de la materia impartida. EX: Técnica del tipo Examen Escrito Evaluación sólo prueba final Presencial Duración: 03:00
3	Diseño de un intercambiador de calor por el método KERN Duración: 02:00 LM: Actividad del tipo Lección Magistral			
4	EJERCICIOS DE CALCULO DE INTERCAMBIADORES DE CALOR Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
5	DISEÑO DE UN INTERCAMBIADOR DE CALOR MÉTODO BELL Duración: 00:00 LM: Actividad del tipo Lección Magistral			
6	fundamentos de sicrometria Duración: 02:00 LM: Actividad del tipo Lección Magistral			Entrega de proyecto de intecambiador de calor TI: Técnica del tipo Trabajo Individual Evaluación continua Presencial Duración: 00:00
7	procesos sicrometricos Duración: 02:00 LM: Actividad del tipo Lección Magistral Aplicación de procesos sicrometricos a la climatización en verano Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
8	calculo de una instalación de climatización en invierno Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
9	fundamentos de la producción frigorífica: Ciclo de compresión mecánica simple Duración: 02:00 LM: Actividad del tipo Lección Magistral			examen de intercambiador de calor y psicrometría EX: Técnica del tipo Examen Escrito Evaluación continua Presencial Duración: 02:30

10	Componentes de una instalación frigorífica Duración: 02:00 LM: Actividad del tipo Lección Magistral		
11	Cliclos frigorificos: Doble compresión, Cascada. Refrigeración supercritica. Duración: 02:00 PR: Actividad del tipo Clase de Problemas		
	diseño de una instalación frigorífica. Duración: 02:00 OT: Otras actividades formativas		
12	calculos de cargas en el proyecto de instalación frigorífica Duración: 02:00 OT: Otras actividades formativas		
13	calculos de componentes de una instalación frigorífica: Compresor, evaporador, condensador. Duración: 00:00 OT: Otras actividades formativas		
14	refrigerantes Duración: 02:00 LM: Actividad del tipo Lección Magistral		
15			Entrega de proyecto de instalación frigorífica Tl: Técnica del tipo Trabajo Individual Evaluación continua Presencial Duración: 15:00
16	generación de calor: combustión . Duración: 02:00 LM: Actividad del tipo Lección Magistral		
17			producción frigorífica y combustión EX: Técnica del tipo Examen Escrito Evaluación continua Presencial Duración: 02:30
			examen final de toda la asignatura. EX: Técnica del tipo Examen Escrito Evaluación sólo prueba final No presencial Duración: 03:30

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

* El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
6	Entrega de proyecto de intecambiador de calor	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	30%	5/10	CE2 CB9 CB10
9	examen de intercambiador de calor y psicrometría	EX: Técnica del tipo Examen Escrito	Presencial	02:30	20%	3.5 / 10	
15	Entrega de proyecto de instalación frigorífica	TI: Técnica del tipo Trabajo Individual	Presencial	15:00	30%	3.5 / 10	CB7 CB10 CE1 CE2 CE6
17	producción frigorífica y combustión	EX: Técnica del tipo Examen Escrito	Presencial	02:30	20%	/10	

7.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
2	examen de teoría y problemas de la materia impartida.	EX: Técnica del tipo Examen Escrito	Presencial	03:00	100%	5/10	CB7 CB9 CB10 CE1 CE2 CE6
17	examen final de toda la asignatura.	EX: Técnica del tipo Examen Escrito	No Presencial	03:30	100%	5/10	

7.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

7.2. Criterios de evaluación

Los alumnos deberán presentar dos trabajos durante el curso.

El primer trabajo consiste en el diseño de un intercambiador de calor de carcasa y tubos sin cambio de fases. Este trabajo tendrá una puntuación de 2,5 puntos de la nota final.

El calculo se aplicará un procedimiento manual: método Kern y un procedimiento informático.

El profesor analizará los criterios de diseño que se han implementado en el cálculo y la coherencia de los resultados.

El segundo trabajo consiste en el diseño de una instalación frigorífica con dos niveles de temperatura. El alumno deberá proponer la ubicación y los productos a almacenar.

Deberá hacer un diseño tanto del almacén como de la instalación frigorífica. Para ello deberá realizar un calculo de cargas, selección de equipos y tuberías.

El profesor corregirá los parámetros de diseño, la coherencia de los resultados.

El examen de evaluación continua consistirá en ejercicios prácticos de alguna de las partes de la asignatura: intercambiadores de calor, producción frigorífica, Sistemas de aire húmedo y/o combustión.

para la evaluación final el alumno deberá demostrar conocimiento de las materias tanto de teoría como de problemas. El problemas podrá combinar las distintas materias de la asignatura.

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
Practical thermal design of Shell-and-tube heat exchangers?,	Bibliografía	
W.F. Stoecker, ?Refrigeration and Air Conditioning?, McGrawHill	Bibliografía	
Refrigeration and Air Coditioning ITT Kharagpur	Recursos web	libro puede descargarse gratuitamente de la red desde la dirección desde la dirección http://nptel.iitm.ac.in/courses/Webcourse-
documentación aulaweb	Recursos web	documentación sobre transparencias de clase
programa ees	Otros	Programas (ecuation solver) para la resolución de problemas térmicos
problemas de calor y frío industrial	Bibliografía	Colección de problemas de calor y frío.