PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

53000985 - Metodos De Simulacion Avanzada

PLAN DE ESTUDIOS

05AT - Master Universitario En Ingenieria Mecanica

CURSO ACADÉMICO Y SEMESTRE

2021/22 - Primer semestre

Índice

Guía de Aprendizaje

UNIVERSIDAD POLITÉCNICA DE MADRID

1. Datos descriptivos	1
2. Profesorado	
3. Conocimientos previos recomendados	2
4. Competencias y resultados de aprendizaje	2
5. Descripción de la asignatura y temario	3
6. Cronograma	4
7. Actividades y criterios de evaluación	6
8. Recursos didácticos	

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	53000985 - Metodos de Simulacion Avanzada			
No de créditos	3 ECTS			
Carácter	Obligatoria			
Curso	Primer curso			
Semestre	Primer semestre			
Período de impartición	Septiembre-Enero			
Idioma de impartición	Castellano			
Titulación	05AT - Master Universitario en Ingenieria Mecanica			
Centro responsable de la titulación	05 - Escuela Técnica Superior De Ingenieros Industriales			
Curso académico	2021-22			

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Ignacio Romero Olleros	UD	ignacio.romero@upm.es	X - 15:30 - 17:30 concertar previamente con el profesor
Gregorio Romero Rey (Coordinador/a)	ETSII	gregorio.romero@upm.es	X - 15:30 - 17:30 concertar previamente con el profesor

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías

con el profesorado.

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

El plan de estudios Master Universitario en Ingenieria Mecanica no tiene definidas asignaturas previas recomendadas para esta asignatura.

3.2. Otros conocimientos previos recomendados para cursar la asignatura

- No se precisa que el alumno tenga conocimientos previos, aunque se recomienda manejo de programas genéricos como Matlab.

4. Competencias y resultados de aprendizaje

4.1. Competencias

- CE5 Relacionar las diferentes aéreas de simulación afines a la ingeniería mecánica.
- CE6 Analizar, diseñar y modelar los distintos componentes de un sistema en base al dominio físico al que pertenezcan, aplicando distintas técnicas de simulación a modelos realistas y multidominio dentro del área de ingeniería mecánica.
- CG 1 Aplicar conocimientos de ciencias y tecnologías avanzadas a la práctica de la Ingeniería Mecánica
- CG 2 Diseñar, desarrollar, implementar, gestionar y mejorar productos, sistemas y procesos en los distintos ámbitos de la ingeniería mecánica, usando técnicas analíticas, computacionales o experimentales apropiadas.

4.2. Resultados del aprendizaje

- RA14 Planteamiento de las ecuaciones diferenciales de comportamiento dinámico
- RA10 Emplear métodos estadísticos para analizar datos experimentales de sistemas mecánicos

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

La asignatura tiene como objetivo llevar a cabo la modelización de las ecuaciones dinámicas de sistemas planos mediante mecánica analítica, más concretamente empleando coordenadas generalizadas y ecuaciones de Lagrange, así como la resolución de las mismas de forma numérica. Además pretende introducir los conceptos de elasticidad y de calor mediante la técnica de Elementos Finitos, incluyendo su programación y resolución. Por último, pretende introducir de forma breve alguno de los conceptos vistos anteriormente mediante la técnica multidominio de Bond-Graph con objeto de poder aplicarlos de forma generalista a distintos dominios de la física.

5.2. Temario de la asignatura

- 1. Introducción al modelado, los métodos numéricos y a Matlab
- 2. Mecánica analítica
 - 2.1. Coordenadas generalizadas, ecuaciones de Lagrange
 - 2.2. Resolución de problemas y descripción del programa Imsolver
 - 2.3. Resolución numérica de problemas con Imsolver
 - 2.4. Problemas con restricciones
 - 2.5. Problemas en tres dimensiones. El sólido rígido
- 3. Elementos finitos
 - 3.1. Problemas finitos para la ecuación del calor
 - 3.2. Problemas finitos para elasticidad
 - 3.3. Programación de elementos finitos
 - 3.4. Resolución de problemas con matfem
 - 3.5. Problemas dinámicos lineales. Matriz de masa. Integración temporal
- 4. Bond-graph

6. Cronograma

6.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Tele-enseñanza	Actividades de evaluación
1	Tema 1 Introducción al modelado, los métodos numéricos y a Matlab Duración: 02:00 LM: Actividad del tipo Lección Magistral			
2	Tema 2 Mecánica analítica. Coordenadas generalizadas, ecuaciones de Lagrange Duración: 02:00 LM: Actividad del tipo Lección Magistral			
3	Tema 2 Mecánica analítica. Resolución de problemas Duración: 01:00 PR: Actividad del tipo Clase de Problemas Tema 2 Mecánica analítica. Descripción del programa Imsolver Duración: 01:00 PR: Actividad del tipo Clase de Problemas			
4	Tema 2 Mecánica analítica. Resolución numérica de problemas con Imsolver Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio			Trabajo individual tema 2 Tl: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 03:00
5	Tema 2 Mecánica analítica. Problemas con restricciones y problemas. Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
6	Tema 2 Mecánica analítica. Problemas en tres dimensiones. El sólido rígido Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
7	Tema 3 Elementos finitos. Problemas finitos para la ecuación del calor Duración: 02:00 LM: Actividad del tipo Lección Magistral			Trabajo individual tema 2 Tl: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 03:00
8	Tema 3 Elementos finitos. Problemas finitos para elasticidad Duración: 02:00 LM: Actividad del tipo Lección Magistral			
9	Tema 3 Elementos finitos. Problemas finitos para elasticidad Duración: 02:00 LM: Actividad del tipo Lección Magistral			

10	Tema 3 Elementos finitos. Programación de elementos finitos Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		Trabajo individual tema 3 Tl: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 03:00
11	Tema 3 Elementos finitos. Resolución de problemas con matfem Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		
12	Tema 3 Elementos finitos. Problemas dinámicos lineales. Matriz de masa. Integración temporal Duración: 02:00 PR: Actividad del tipo Clase de Problemas		
13	Tema 4 Bond-graph Duración: 02:00 LM: Actividad del tipo Lección Magistral		Trabajo individual tema 3 Tl: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 03:00
14	Tema 4 Bond-graph Duración: 02:00 PR: Actividad del tipo Clase de Problemas		
15			Trabajo individual tema 4 Tl: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 03:00
16			
17			Examen asignatura EX: Técnica del tipo Examen Escrito Evaluación continua Presencial Duración: 02:00
, i			Examen asignatura EX: Técnica del tipo Examen Escrito Evaluación sólo prueba final Presencial Duración: 03:00

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

^{*} El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
4	Trabajo individual tema 2	TI: Técnica del tipo Trabajo Individual	No Presencial	03:00	10%	3/10	CG 2 CE5 CE6 CG 1
7	Trabajo individual tema 2	TI: Técnica del tipo Trabajo Individual	No Presencial	03:00	15%	3/10	CG 2 CE5 CE6 CG 1
10	Trabajo individual tema 3	TI: Técnica del tipo Trabajo Individual	No Presencial	03:00	10%	3/10	CG 2 CE5 CE6 CG 1
13	Trabajo individual tema 3	TI: Técnica del tipo Trabajo Individual	No Presencial	03:00	15%	3/10	CG 2 CE5 CE6 CG 1
15	Trabajo individual tema 4	TI: Técnica del tipo Trabajo Individual	No Presencial	03:00	10%	3/10	CG 2 CE5 CE6 CG 1
17	Examen asignatura	EX: Técnica del tipo Examen Escrito	Presencial	02:00	40%	4/10	CG 2 CE5 CE6 CG 1

7.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
17	Examen asignatura	EX: Técnica del tipo Examen Escrito	Presencial	03:00	100%	/ 10	CG 2 CE5 CE6 CG 1

7.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

7.2. Criterios de evaluación

La asignatura está diseñada para su calificación mediante evaluación continua, solicitándose a los alumnos la realización de problemas fuera del aula y de forma individual a la mitad y final de cada tema con objeto de adquirir destrezas, asimilar mejor lo ya visto en clase y plantearle ciertas dudas al alumno para que piense sobre los distintos contenidos de cada tema. De esta forma, cada dos o tres semanas el alumno debe realizar fuera del aula uno o varios ejercicios en donde se incluyen no sólo términos ya vistos en clase, sino que además se le hace pensar acerca de conceptos que se verán en la siguiente clase, despertándose así el interés del alumno sobre la resolución de lo planteado para su resolución.

En lo que respecta a la evaluación continua, cada entrega semanal contará el 10-15% y servirá para una mejor asimilación de contenidos y estudio por parte del alumno, existiendo una nota mínima de 3 puntos sobre 10 en cada una de las entregas y de 4 en el conjunto de todas las entregas; el conjunto de entregas significará el 60% de la calificación final. El examen final (40% de la calificación) será presencial y escrito, y se realizará el día señalado por la Subdirección-Jefatura de Estudios, existiendo una nota mínima de 4 puntos sobre 10 para contemplar la calificación obtenida en las entregas semanales. Esta forma de calificación será aplicable en las convocatorias ordinaria (febrero) y extraordinaria (julio), existiendo en esta última convocatoria la opción de guardar la calificación de las distintas entregas que se han realizado para que pueda hacer media.

En caso de que el alumno no desee realizar la evaluación continua, la evaluación se llevará a cabo únicamente mediante un examen final, el cual representará el 100% de la calificación de la asignatura.

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
Goldstein, H. (1980). Classical Mechanics (2nd ed.). Addison- Wesley.	Bibliografía	Mecánica analítica
Lanczos, C. (1986). The variational principles of mechanics. Dover.	Bibliografía	Mecánica analítica

Cellier, F.E. (1991). Continuous		
System Modeling. Springer-Verlag,	Bibliografía	Metodología de Bond-Graph
New York		
Karnopp, D.C.; Margolis, D.L.;		
Rosenberg, R.C. (2000). System		
Dynamics. Modeling and Simulation	Bibliografía	Metodología de Bond-Graph
of Mechatronic Systems. Wiley		
Interscience		