PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

53002002 - Tecnología Eléctrica Y Redes

PLAN DE ESTUDIOS

05BK - Master Universitario En Ingenieria De La Energia

CURSO ACADÉMICO Y SEMESTRE

2021/22 - Primer semestre

Índice

Guía de Aprendizaje

UNIVERSIDAD POLITÉCNICA DE MADRID

1. Datos descriptivos	1
2. Profesorado	
3. Conocimientos previos recomendados	
4. Competencias y resultados de aprendizaje	2
5. Descripción de la asignatura y temario	
6. Cronograma	
7. Actividades y criterios de evaluación	
8. Recursos didácticos	

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	53002002 - Tecnología Eléctrica y Redes			
No de créditos	3 ECTS			
Carácter	Obligatoria			
Curso	Primer curso			
Semestre	Primer semestre			
Período de impartición	Septiembre-Enero			
Idioma de impartición	Castellano			
Titulación	05BK - Master Universitario en Ingenieria de la Energia			
Centro responsable de la titulación	05 - Escuela Tecnica Superior De Ingenieros Industriales			
Curso académico	2021-22			

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Rafael Asensi Orosa			Sin horario.
(Coordinador/a)		rafael.asensi@upm.es	Consultar con el
(Coordinadol/a)			profesor.

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

El plan de estudios Master Universitario en Ingenieria de la Energia no tiene definidas asignaturas previas recomendadas para esta asignatura.

3.2. Otros conocimientos previos recomendados para cursar la asignatura

- Máquinas eléctricas (transformador y máquina síncrona)
- Análisis de circuitos en alterna (trifásica y monofásica)
- Conocimientos de electromagnetismo
- Operacionas básicas con números complejos
- Teoría de circuitos

4. Competencias y resultados de aprendizaje

4.1. Competencias

- CB10 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- CB7 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- CB9 Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
- CE19 Entender el funcionamiento de redes eléctricas en un contexto de decarbonización de la sociedad
- CE3 Utilizar las herramientas necesarias para el diseño y análisis de sistemas de generación, trasformación, almacenamiento y utilización de energías nucleares, mecánicas, eléctricas, térmicas e hidráulicas.

- CE7 Conocer y aplicar las alternativas para la operación segura de instalaciones energéticas, tanto renovables, como no renovables, y de transformación de vectores energéticos, como refinerías o biorrefinerías
- CG1 Aplicar conocimientos de ciencias y tecnologías avanzadas a la práctica profesional o investigadora de la Ingeniería Energética.
- CG5 Comprender el impacto de la Ingeniería Energética en el medio ambiente, el desarrollo sostenible de la sociedad y la importancia de trabajar en un entorno profesional y responsable.
- CG8 Incorporar nuevas tecnologías y herramientas avanzadas de la Ingeniería Energética en sus actividades profesionales o investigadoras.
- CT1 Aplica. Habilidad para aplicar conocimientos científicos, matemáticos y tecnológicos en sistemas relacionados con la práctica de la ingeniería.
- CT10 Conoce. Conocimiento de los temas contemporáneos.
- CT3 Diseña. Habilidad para diseñar un sistema, componente o proceso que alcance los requisitos deseados teniendo en cuenta restricciones realistas tales como las económicas, medioambientales, sociales, políticas, éticas, de salud y seguridad, de fabricación y de sostenibilidad.
- CT5 Resuelve. Habilidad para identificar, formular y resolver problemas de ingeniería.

4.2. Resultados del aprendizaje

- RA138 Capacidad de análisis de sistemas eléctricos de potencia.
- RA139 Capacidad de comprensión del funcionamiento de los sistemas eléctricos de potencia.
- RA137 Comprensión profunda de los sistemas eléctricos de potencia.

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

En esta asignatura se estudian algunos temas relacionados con el diseño, el análisis y el funcionamiento de los sistemas eléctricos de potencia.

5.2. Temario de la asignatura

- 1. El sistema eléctrico español.
- 2. Aparamenta eléctrica de media y alta tensión.
- 3. Ecuaciones de los sistemas trifásicos equilibrados.
- 4. Análisis en valores por unidad.
- 5. Transformadores y autotransformadores. Regulación de tensión.
- 6. El generador síncrono. Regulación de tensión y de potencia.
- 7. La línea de parámetros distribuidos. Ecuaciones de funcionamiento.
- 8. Análisis de sistemas eléctricos de potencia mediante flujo de cargas.
- 9. Estabilidad del sistema.

6. Cronograma

6.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Tele-enseñanza	Actividades de evaluación
1	Temas 1 y 2 Duración: 02:00 LM: Actividad del tipo Lección Magistral			
2	Temas 2 y 3 Duración: 02:00 LM: Actividad del tipo Lección Magistral			
3	Temas 4 y 5 Duración: 02:00 LM: Actividad del tipo Lección Magistral			
4	Tema 5 Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
5	Temas 5 y 6 Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
6	Tema 7 Duración: 02:00 LM: Actividad del tipo Lección Magistral			
7	Tema 7 Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
8	Tema 7 Duración: 02:00 LM: Actividad del tipo Lección Magistral			
9	Tema 7 Duración: 02:00 LM: Actividad del tipo Lección Magistral			Primera prueba de evaluación continua (PEC1) EX: Técnica del tipo Examen Escrito Evaluación continua Presencial Duración: 02:00
10	Tema 7 Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
11	Tema 8 Duración: 02:00 LM: Actividad del tipo Lección Magistral			
12	Tema 8 Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
13	Temas 8 y 9 Duración: 02:00 LM: Actividad del tipo Lección Magistral			

14	Tema 9 Duración: 02:00 LM: Actividad del tipo Lección Magistral		
15			
16			
17			Segunda prueba de evaluación continua (PEC2) EX: Técnica del tipo Examen Escrito Evaluación continua Presencial Duración: 02:00
			Examen final EX: Técnica del tipo Examen Escrito Evaluación sólo prueba final Presencial Duración: 02:30

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

^{*} El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
9	Primera prueba de evaluación continua (PEC1)	EX: Técnica del tipo Examen Escrito	Presencial	02:00	50%	2.5 / 10	CT10 CE7 CE19 CG1 CT5
17	Segunda prueba de evaluación continua (PEC2)	EX: Técnica del tipo Examen Escrito	Presencial	02:00	50%	2.5 / 10	CT10 CE7 CE19 CG1 CT5

7.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
17	Examen final	EX: Técnica del tipo Examen Escrito	Presencial	02:30	100%	5/10	CT10 CE7 CE19 CG1 CT5

7.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

7.2. Criterios de evaluación

Los alumnos tienen la posibilidad de elegir la modalidad de evaluación: **Evaluación Continua (EC)** o **Evaluación sólo por Prueba Final (PF)**. De acuerdo a la normativa de evaluación de la UPM, por defecto, los alumnos están incluidos en la modalidad de **EC**. Aquellos alumnos que deseen optar por la modalidad de **PF** deben notificarlo por escrito al coordinador de la asignatura hasta una semana antes de la **PEC1**.

Criterio de evaluación para la modalidad de Evaluación Continua

La modalidad de evaluación continua EC consta de dos pruebas que se detallan a continuación:

- Primera prueba de evaluación continua (PEC1). Tiene lugar en la semana 9 del curso y evalúa la materia dada hasta entonces. Esta prueba tiene un peso del 50% de la nota final y debe obtenerse una nota mínima de 2,5.
- Segunda prueba de evaluación continua (PEC2). Tiene lugar en la fecha y horario indicados en el POD y
 evalúa toda la asignatura. Esta prueba tiene un peso del 50% de la nota final y debe obtenerse una nota
 mínima de 2,5.

La nota final de la modalidad **EC** es 0,5·PEC1 + 0,5·PEC2. Debe obtenerse una nota mayor o igual que 5 para aprobar la asignatura.

Criterio de evaluación para la modalidad de Evaluación sólo por Prueba Final

Los alumnos que opten por la **PF** tienen una única prueba que coincidirá en fecha con la **PEC2**. El peso de esta prueba es del 100% y debe obtenerse una nota mínima de 5 para aprobar la asignatura.

Los alumnos suspensos pueden presentarse a las convocatorias extraordinarias establecidas por la normativa de exámenes. En dichas convocatorias se evalúa la asignatura completa y debe obtenerse una nota mínima de 5 para aprobar la asignatura.

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
El suministro de la electricidad.		
Informe del Sistema Eléctrico	Recursos web	www.ree.es
Español		
Devices Cristons Applicate & Design	Dibliografía	J. Duncan Glover, Mulukutla. S. Sarma y
Power System Analysis & Design	Bibliografía	Thomas J. Overbye
A. Chita da ciata con de catalogo de Pilliana (Ca		John J. Grainger y William D. Stevenson Jr.
Análisis de sistemas de potencia	Bibliografía	Ed. McGraw Hill 1996
Sistemas de energía eléctrica	Bibliografía	Fermín Barrero. Ed. Thomson 2004
Transparencias de la asignatura	Otros	
Colección de problemas de clase	Otros	