PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

55001012 - Estadistica

PLAN DE ESTUDIOS

05IQ - Grado En Ingenieria Quimica

CURSO ACADÉMICO Y SEMESTRE

2021/22 - Primer semestre

Índice

Guía de Aprendizaje

UNIVERSIDAD POLITÉCNICA DE MADRID

1. Datos descriptivos	
2. Profesorado	
3. Competencias y resultados de aprendizaje	2
4. Descripción de la asignatura y temario	3
5. Cronograma	6
6. Actividades y criterios de evaluación	3
7. Recursos didácticos	13
8. Otra información	

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	55001012 - Estadistica			
No de créditos	6 ECTS			
Carácter	Básica			
Curso	Segundo curso			
Semestre	Tercer semestre			
Período de impartición	Septiembre-Enero			
Idioma de impartición	Castellano			
Titulación	05IQ - Grado en Ingenieria Quimica			
Centro responsable de la titulación	05 - Escuela Tecnica Superior De Ingenieros Industriales			
Curso académico	2021-22			

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Jesus Juan Ruiz		jesus.juan@upm.es	Sin horario.
M. Camino Gonzalez Fernandez		camino.gonzalez@upm.es	Sin horario.
Carolina Silvia Garcia Martos		garcia.martos@upm.es	Sin horario.
Francisco Javier Cara Cañas (Coordinador/a)		javier.cara@upm.es	Sin horario.

Eduardo Caro Huertas	eduardo.caro@upm.es	Sin horario.
Maria Jesus Sanchez Naranjo	mariajesus.sanchez@upm.e s	
Jose Manuel Mira Mcwilliams	josemanuel.mira@upm.es	Sin horario.

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Competencias y resultados de aprendizaje

3.1. Competencias

- CE 6 Capacidad para conocer, entender y utilizar los principios de Estadística aplicada.
- CG 1 Conocer y aplicar los conocimientos de ciencias y tecnologías básicas a la práctica de la Ingeniería Industria
- CG 2 Poseer la capacidad para diseñar, desarrollar, implementar, gestionar y mejorar productos, sistemas y procesos en los distintos ámbitos industriales, usando técnicas analíticas, computacionales o experimentales apropiadas
- CG 3 Aplicar los conocimientos adquiridos para identificar, formular y resolver problemas en contextos amplios, siendo capaces de integrar los trabajando en equipos multidisciplinares
- CG 6 Poseer las habilidades de aprendizaje que permitan continuar estudiando a lo largo de toda la vida para un desarrollo profesional adecuado

CG 7 - Incorporar las TIC y las tecnologías y herramientas de la Ingeniería Industrial en sus actividades profesionales

3.2. Resultados del aprendizaje

- RA23 Identificar problemas que pueden plantearse en términos estadísticos.
- RA25 Comprender las limitaciones de los modelos estadísticos cuando se trabaja con problemas reales. Evaluar posibles métodos alternativos.
- RA26 Utilizar programas de ordenador de análisis estadístico general y de cálculo científico.
- RA27 Situarse con actitud crítica ante la validez de los cálculos y resultados.

4. Descripción de la asignatura y temario

4.1. Descripción de la asignatura

El primer objetivo de la asignatura es enseñar los conceptos básicos de probabilidad. El alumno adquiere un dominio suficiente para manejar las distribuciones de probabilidad más útiles en ingeniería: la distribución normal, la distribución binomial, y la distribución de Poisson y la distribución exponencial.

El alumno adquiere un dominio suficiente para trabajar con distribuciones multivariantes.

Es capaz de realizar el análisis descriptivo de una variable y de varias variables.

Aprende a seleccionar el modelo de probabilidad que mejor se ajusta a una muestra, estimar sus parámetros, dar intervalo de confianza para las distribuciones de probabilidad básicas enumeradas anteriormente y realizar contraste de hipótesis sobre los parámetros de las distribuciones anteriores.

Desde el punto de vista teórico, el alumno aprende los conceptos básicos de la teoría de estimación y contraste de hipótesis y las pone en práctica.

4.2. Temario de la asignatura

- 1. Estadística Descriptiva con R/RStudio
 - 1.1. Descripción de una variable
 - 1.2. Representaciones gráficas: Histograma, Box-plot
 - 1.3. Medidas de centralización y de dispersión
 - 1.4. Medidas de asimetría y curtosis
 - 1.5. Transformaciones lineales y no lineales de los datos
 - 1.6. Descriptiva multivariante: covarianza y correlación
 - 1.7. Matriz de Varianzas
 - 1.8. Gráficos de dispersión
 - 1.9. Transformaciones lineales de varias variables
- 2. Fundamentos de Probabilidad
 - 2.1. Definición de probabilidad y sus propiedades
 - 2.2. Probabilidad Condicionada
 - 2.3. Independencia de Sucesos
 - 2.4. Teorema de Probabilidad total y teorema de Bayes
- 3. Variable Aleatoria
 - 3.1. Variables aleatorias discretas y continuas
 - 3.2. Función de Probabilidad, función de densidad y función de distribución
 - 3.3. Esperanza: Media y Varianza
 - 3.4. Transformaciones lineales y no lineales
 - 3.5. Distribución conjunta de dos variables aleatorias
 - 3.6. Distribuciones marginales y condicionadas
 - 3.7. Independencia de variables aleatorias
 - 3.8. Esperanza de vectores aleatorios
 - 3.9. Covarianza y correlación
 - 3.10. Matriz de varianzas
 - 3.11. Suma de Variables Aleatorias

4. Modelos Probabilidad

- 4.1. Distribución binomial y distribución geométrica.
- 4.2. Distribución de Poisson y distribución exponencial.
- 4.3. Distribución Normal.
- 4.4. Otras distribuciones de probabilidad univariantes
- 4.5. Teorema central del límite
- 4.6. Relación entre binomial, Poisson y normal
- 4.7. Simulación del teorema central del límite
- 4.8. Distribución normal multivariante

5. Estimación paramétrica

- 5.1. Muestra y población. Muestreo aleatorio simple.
- 5.2. La estimación del modelo. Método de los momentos. Método de máxima verosimilitud.
- 5.3. Propiedades de los estimadores.
- 5.4. Distribución de media muestral de una distribución Normal
- 5.5. Distribución de varianza muestral de una distribución Normal: Distribución chi-cuadrado.
- 5.6. Distribución de los estimadores en la distribución binomial y Poisson.
- 5.7. Intervalo de confianza para una proporción
- 5.8. Intervalo de confianza para el parámetro de la distribución de Poisson
- 5.9. Intervalo de confianza para los parámetros de la distribución normal
- 5.10. Intervalos asintóticos

6. Contrastes de Hipótesis

- 6.1. Concepto de contraste de hipótesis: Contraste para la proporción,
- 6.2. Contraste para la media y la varianza de distribuciones normales.
- 6.3. Contraste para la media de la distribución de Poisson.
- 6.4. Comparación de dos tratamientos: comparación de medias
- 6.5. Contraste de igualdad de varianzas: Distribución F.
- 6.6. Concepto de p-valor.
- 6.7. Contrastes de bondad de la Chi-cuadrado para bondad de ajuste

5. Cronograma

5.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Tele-enseñanza	Actividades de evaluación
1	Estadística Descriptiva Duración: 04:00 LM: Actividad del tipo Lección Magistral			
2	Probabilidad I Duración: 04:00 LM: Actividad del tipo Lección Magistral			
3	Probabilidad I Duración: 04:00 LM: Actividad del tipo Lección Magistral			
4	Variable Aleatoria I Duración: 04:00 LM: Actividad del tipo Lección Magistral			Tarea Descriptiva TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Presencial Duración: 00:00
5	Variable Aleatoria I Duración: 04:00 LM: Actividad del tipo Lección Magistral			
6	Ejercicios de Variable Aleatoria Duración: 04:00 PR: Actividad del tipo Clase de Problemas			
7	Variable Aleatoria II Duración: 04:00 LM: Actividad del tipo Lección Magistral			
8	Variable Aleatoria II Duración: 04:00 LM: Actividad del tipo Lección Magistral			Tarea Simulación TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Presencial Duración: 00:00
9	Estimación: Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			
10	Estimación: Teoría y problemas Duración: 04:00 PR: Actividad del tipo Clase de Problemas			Prueba de evaluación continua EX: Técnica del tipo Examen Escrito Evaluación continua Presencial Duración: 01:30
11	Intervalos: Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			
12	Intervalos de Confianza: Teoría y problemas Duración: 04:00 PR: Actividad del tipo Clase de Problemas			Tarea Modelos de Probabilidad TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Presencial Duración: 00:00

UNIVERSIDAD POLITÉCNICA DE MADRID

	Contraste de Hipótesis: Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral		
	Contraste de Hipótesis: Teoría y problemas Duración: 04:00 PR: Actividad del tipo Clase de Problemas		
	Contraste de Hipótesis: Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral		Tarea Inferencia TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Presencial Duración: 00:00
	Contraste de Hipótesis: Teoría y problemas Duración: 04:00 PR: Actividad del tipo Clase de Problemas		Prueba de evaluación continua EX: Técnica del tipo Examen Escrito Evaluación continua Presencial Duración: 01:30
17			Examen Final EX: Técnica del tipo Examen Escrito Evaluación sólo prueba final Presencial Duración: 02:00

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

^{*} El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

6. Actividades y criterios de evaluación

6.1. Actividades de evaluación de la asignatura

6.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
4	Tarea Descriptiva	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	%	/ 10	CG 2 CG 6 CG 7 CE 6
8	Tarea Simulación	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	%	/10	CG 1 CG 2 CG 3 CG 6 CG 7 CE 6
10	Prueba de evaluación continua	EX: Técnica del tipo Examen Escrito	Presencial	01:30	50%	5/10	CG 1 CG 2 CG 3 CG 6 CG 7 CE 6
12	Tarea Modelos de Probabilidad	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	%	/ 10	CG 1 CG 3 CG 6 CE 6
15	Tarea Inferencia	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	%	/ 10	CG 1 CG 3 CE 6
16	Prueba de evaluación continua	EX: Técnica del tipo Examen Escrito	Presencial	01:30	50%	5/10	CG 1 CG 2 CG 3 CG 6 CG 7 CE 6

6.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
4	Tarea Descriptiva	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	%	/ 10	CG 2 CG 6 CG 7 CE 6
8	Tarea Simulación	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	%	/10	CG 1 CG 2 CG 3 CG 6 CG 7 CE 6
12	Tarea Modelos de Probabilidad	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	%	/ 10	CG 1 CG 3 CG 6 CE 6
15	Tarea Inferencia	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	%	/ 10	CG 1 CG 3 CE 6
17	Examen Final	EX: Técnica del tipo Examen Escrito	Presencial	02:00	100%	5/10	CG 1 CG 2 CG 3 CG 6 CG 7 CE 6

6.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

6.2. Criterios de evaluación

1. TAREAS VOLUNTARIAS

Cualquier análisis estadístico requiere el uso de un ordenador. En las asignaturas que impartimos los profesores de Estadística de la ETSII utilizamos R y RStudio. R es un entorno y lenguaje de programación dirigido al análisis estadístico. Se trata de uno de los lenguajes de programación más utilizados en investigación científica, siendo además muy popular en los campos de aprendizaje automático (machine learning), minera de datos, investigación biomédica, bioinformática y matemáticas financieras. Es el programa de referencia de los departamentos universitarios del área de Estadística. R es parte del sistema GNU y se distribuye bajo la licencia GNU GPL (totalmente gratuito). Está disponible para los sistemas operativos Windows, Macintosh, Unix y GNU/Linux.

- 1. A lo largo del curso se han programado 4 tareas voluntarias para realizar con R/RStudio.
 - Tarea de Descriptiva (T1): entrega semana 3
 - Tarea de Simulación (T2): entrega semana 7
 - Tarea de Modelos de Probabilidad (T3): entrega semana 11
 - Tarea de Inferencia (T4): entrega semana 14
- 2. Las tareas serán corregidas por los alumnos utilizando el sistema implementado en Moodle. Según este sistema cada alumno evaluará tres ejercicios y su ejercicio ser evaluado por tres compañeros. La nota de la tarea será el promedio de las tres calificaciones, siempre y cuando los profesores no detecten ninguna evaluación incorrecta u otra anomalía. Los profesores supervisarán el proceso de evaluación intentando respetar al máximo la evaluación realizada por los alumnos.
- 3. El 10% de la nota media de las tareas 1 y 2 se sumará a la calificación obtenida en examen correspondiente a la primera parte de la asignatura. (Siempre que el alumno haya realizado las dos tareas).
- 4. El 10% de la nota media de las tareas 3 y 4 se sumará a la calificación obtenida en el examen correspondiente

a la segunda parte de la asignatura. (Es obligatorio realizar las dos tareas).

5. Para los alumnos que no hayan aprobado en la convocatoria ordinaria, el 10% de la nota media delas cuatro tareas se sumará a la calificación obtenida en el examen extraordinario de la asignatura. (Es obligatorio haber realizado las cuatro tareas).

2. EVALUACIÓN DE LA ASIGNATURA

A efectos de evaluación, la asignatura se divide en dos partes:

- Parte I: Capítulos 1, 2 y 3. (PEC1)

- Parte II: Capítulos 4, 5 y 6. (PEC2)

1. Pruebas de Evaluación Continua: dos exámenes liberatorios correspondientes a cada parte de la asignatura:

Cada parte será evaluada con un examen tipo test (PEC1 y PEC2). El examen consistirá en 16 cuestiones tipo test con con cinco respuestas posibles, de las que solo una es correcta. La nota se obtiene multiplicando el número de preguntas correctas por 0.625 y restando el número de preguntas falladas multiplicado por 0.625/4. Se considera pregunta fallada la pregunta contestada erróneamente. Las preguntas sin contestar no cuentan en el cálculo de la nota. La PEC1 se realizará a mediados del cuatrimestre y la PEC2 al final de cuatrimestre. La nota de cada PEC se obtendrá sumando a la puntuación del examen el 10% de la nota media de las tareas correspondientes a esa parte. Se aprueba el examen con una nota de la PEC igual o superior a 5.

El alumno que apruebe las dos Pruebas de Evaluación Continua, tendrá aprobada la asignatura. La calificación final será igual a la media aritmética de las dos notas. Los alumnos que no hayan aprobado la PEC1 y la PEC2

tendrán que acudir a los exámenes finales para aprobar la asignatura. Un alumno con una parte aprobada no tendrá que examinarse de esa parte en el examen ordinario de enero. A efectos de su calificación final, se utilizará la nota obtenida en la prueba de evaluación continua. Importante: Las notas obtenidas en las PECs no serán tenidas en cuenta en el examen extraordinario de Julio.

2. Examen Final Ordinario (enero): Dos ejercicios correspondientes a cada parte de la asignatura. (Este examen sirve para evaluar la asignatura a aquellos alumnos que no hayan realizado las pruebas de evaluación continua o como exámenes de recuperación para los alumnos que hayan suspendido alguna de las dos PEC.)

El examen tiene dos ejercicios, que se corresponden con las dos partes (PEC1 y PEC2) de la asignatura. Cada ejercicio consistirá en 10 cuestiones tipo test con cinco respuestas posibles, de las que solo una es correcta. La nota se obtiene multiplicando el número de preguntas correctas por 1.0 y restando el número de preguntas falladas multiplicado por 0.25. Se considera pregunta fallada la pregunta contestada erróneamente. Las preguntas sin contestar no cuentan en el cálculo de la nota. Las notas de las tareas serán tenidas en cuenta en la nota final utilizando la misma regla que en la Evaluación Continua. Se aprueba el ejercicio con una nota igual o superior a 5. El alumno se examinará solo de las partes de la asignatura que no haya aprobado en la PEC. Para aprobar la asignatura será necesario tener aprobadas las dos partes (bien en la PEC o en el ejercicio correspondiente del examen ordinario). La nota final de los alumnos con las dos partes aprobadas será igual a la media aritmética de las dos notas parciales. La nota final de un alumno con alguna parte suspendida será igual al promedio de las notas parciales si esta nota media es menor de 4; y a cuatro cuando la nota media de las notas parciales sea superior a 4. Nota: Un alumno que haya aprobado la PEC puede presentarse a subir nota a la parte correspondiente del examen ordinario, en ese caso la calificación utilizada para calcular la nota final será la obtenida en el examen ordinario.

3. Examen Final Extraordinario (Julio): Un examen único para todos los alumnos.

Consistirá en un único ejercicio tipo test con 20 cuestiones incluyendo preguntas de las dos partes de la asignatura, con la estructura y valoración descritas en las pruebas de evaluación continua. Para el alumno que haya realizado las cuatro tareas, su nota del examen se incrementar en un 10% de la nota media de las cuatro tareas. Para aprobar la asignatura hay que obtener una nota igual o superior a 5.

7. Recursos didácticos

7.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones		
		Libro que contiene toda la documentación		
Estadística	Bibliografía	necesaria para seguir la asignatura		
		(diapositivas del temario, ejercicios,		
		soluciones y tablas) 		
Fundamentos de Estadística (Daniel	 Bibliografía	Libro publicado por Alianza Editorial		
Peña)	Bibliografia	Libro publicado por Alianza Editorial		
		Libro de ejercicios escrito por los profesores		
Problemas Resueltos de Estadística	Bibliografía	de la asignatura. 		
Problemas Resueltos de Estadística		Editorial Síntesis. 		
		Autores: Jesús Juan,		
R y R-Studio	Recursos web	Programa Estadístico Gratuíto		

8. Otra información

8.1. Otra información sobre la asignatura

Toda la información actualizada sobre la asignatura estará disponible en Moodle.

Página web: www.etsii.upm.es/ingor/estadistica