PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

55000011 - Ecuaciones Diferenciales

PLAN DE ESTUDIOS

05TI - Grado En Ingeniería En Tecnologías Industriales

CURSO ACADÉMICO Y SEMESTRE

2021/22 - Primer semestre

Índice

Guía de Aprendizaje

UNIVERSIDAD POLITÉCNICA DE MADRID

1. Datos descriptivos	1
2. Profesorado	
3. Conocimientos previos recomendados	
4. Competencias y resultados de aprendizaje	3
5. Descripción de la asignatura y temario	
6. Cronograma	
7. Actividades y criterios de evaluación	9
8. Recursos didácticos	11
9. Otra información	12

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	55000011 - Ecuaciones Diferenciales	
No de créditos	6 ECTS	
Carácter	Básica	
Curso	Segundo curso	
Semestre	Tercer semestre	
Período de impartición	Septiembre-Enero	
Idioma de impartición	Castellano	
Titulación	05TI - Grado en Ingeniería en Tecnologías Industriales	
Centro responsable de la titulación	05 - Escuela Técnica Superior De Ingenieros Industriales	
Curso académico	2021-22	

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Maria Cristina Sardon Muñoz	Despacho	mariacristina.sardon@upm.e s	J - 11:00 - 14:00 V - 11:00 - 14:00
Manuel Mendoza De Haro	oza De Haro Despacho manuel.mendoza@upm.es		V - 17:30 - 20:30
Pedro Galan Del Sastre (Coordinador/a)	Despacho	pedro.galan@upm.es	M - 09:30 - 11:30 X - 09:30 - 10:30 X - 12:30 - 13:30 J - 11:30 - 13:30

Luis Jesus Fernandez De			Sin horario.
Las Heras	Despacho	luisjesus.fernandez@upm.es	Consultar con el
Las neras		profesor	

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

2.3. Profesorado externo

Nombre	Correo electrónico	Centro de procedencia
Ana Soledad Meroño Moreno	anasoledad.merono@upm.es	Universidad Politécnica de Madrid

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

- Algebra
- Calculo li
- Calculo I

3.2. Otros conocimientos previos recomendados para cursar la asignatura

- Técnicas del cálculo infinitesimal con funciones de varias variables reales: diferenciación, teorema de la función implícita.
- Conocimientos básicos de Física General: velocidad, aceleración, campos de fuerzas, etc.
- Técnicas elementales de Cálculo Infinitesimal: derivadas, regla de la cadena, cálculo de primitivas.
- Técnicas elementales de Álgebra Lineal: cálculo matricial, diagonalización, autovalores y autovectores.
- Operaciones básicas con números complejos, notación exponencial.

4. Competencias y resultados de aprendizaje

4.1. Competencias

- CE1 Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales ordinarias y en derivadas parciales; métodos numéricos; algorítmica numérica; optimización
- CG1 Conocer y aplicar conocimientos de ciencias y tecnologías básicas a la práctica de la Ingeniería Industrial.
- CG10 Capacidad para generar nuevas ideas (Creatividad).
- CG2 Poseer capacidad para diseñar, desarrollar, implementar, gestionar y mejorar productos, sistemas y procesos en los distintos ámbitos industriales, usando técnicas analíticas, computacionales o experimentales apropiadas.
- CG3 Aplicar los conocimientos adquiridos para identificar, formular y resolver problemas dentro de contextos amplios y multidisciplinarios, siendo capaces de integrar conocimientos, trabajando en equipos multidisciplinares.
- CG5 Saber comunicar los conocimientos y conclusiones, de forma oral, escrita y gráfica, a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CG6 Poseer habilidades de aprendizaje que permitan continuar estudiando a lo largo de la vida para su adecuado desarrollo profesional.
- CG7 Incorporar nuevas tecnologías y herramientas de la Ingeniería Industrial en sus actividades profesionales.

4.2. Resultados del aprendizaje

- RA242 Capacidad de abstracción y reconocimiento de conceptos generales en situaciones prácticas.
- RA243 Capacidad para formular y analizar modelos de procesos naturales. Capacidad de interpretar los resultados obtenidos y evaluar los modelos utilizados.
- RA244 Habilidad para aplicación de métodos analíticos a la resolución de problemas técnicos conocidos que han aparecido en otras materias.
- RA232 Proporciona un abanico muy diverso de herramientas para abordar el tratamiento de modelos de procesos naturales.
- RA245 Proporciona una panorámica muy amplia de modelos clásicos aplicados en muy diversos campos: mecánica, ecología teórica, economía, epidemiología, etc.

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

Los contenidos de esta asignatura se orientan especialmente al estudio de las ecuaciones diferenciales ordinarias así como a problemas de contorno y de valor inicial formulados en términos de ecuaciones en derivadas parciales.

Uno de los objetivos que se persigue en el desarrollo de esta asignatura es el de iniciar a los alumnos en procedimientos de modelado de procesos naturales (físicos, químicos, biológicos, etc.) proporcionando un panorama de técnicas lo más amplio posible, dirigido hacia las aplicaciones.

5.2. Temario de la asignatura

- 1. Ecuaciones diferenciales ordinarias de primer orden.
 - 1.1. Modelización matemática en problemas de ingeniería y medio ambiente: ley de enfriamiento y calentamiento de un cuerpo, modelos de población.
 - 1.2. Definiciones sobre E.D.O. Problemas de valor inicial o de Cauchy. Existencia y unicidad. Prolongabilidad de soluciones.
 - 1.3. E.D.O. de variables separables. E.D.O. homogéneas.
 - 1.4. E.D.O. exactas. Función potencial.
 - 1.5. E.D.O. lineales de primer orden. E.D.O. de Bernoulli.
- 2. Sistemas de ecuaciones diferencial lineales de primer orden.
 - 2.1. Modelización matemática en problemas de ingeniería y medio ambiente: mezclas de sustancias.
 - 2.2. Sistemas de E.D.O. lineales de primer orden y coeficientes constantes. Escritura matricial. Problema de valor inicial. Matriz fundamental y conjunto fundamental de soluciones.
 - 2.3. Matriz diagonalizable en R y en C. Expresión de la solución general del sistema de ecuaciones diferenciales en términos de autovalores y autovectores de la matriz asociada al sistema.
 - 2.4. Caso general: exponencial de una matriz. Métodos de cálculo. Expresión de la solución de un problema de valor inicial.
 - 2.5. Espaciones de fases de los sistemas de ecuaciones diferenciales lineales en el plano. Clasificación: nodos, puertos, focos y centros.
 - 2.6. Sistemas de ecuaciones diferenciales no homogéneos. Fórmula de variación de las constantes.
- 3. Ecuaciones diferenciales lineales de orden n.
 - 3.1. Modelización matemática en problemas de ingeniería y medio ambiente: sistemas masa-resorte.
 - 3.2. E.D.O. lineales de orden n con coeficientes constantes. El sistema diferencial equivalente. Sistema fundamental de soluciones. Problema de valor inicial.
 - 3.3. Caso no homogéneo: métodos de variación de las constantes y de los coeficientes indeterminados.
 - 3.4. E.D.O. lineales de orden n y coeficientes variables. Reducción del orden. Ecuaciones de Euler.
- 4. Introducción a las ecuaciones en derivadas parciales.
 - 4.1. Modelización matemática en problemas de ingeniería y medio ambiente: leyes de conservación, flujo de tráfico.
 - 4.2. E.D.P. cuasilineal de primer orden. Problema de valor inicial. Curvas características. Ondas de choque y

la condición de Rankine-Hugoniot.

- 4.3. Modelización matemática en problemas de ingeniería y medio ambiente: la ecuación del calor
- 4.4. El método de separación de variables. Problema de autovalores y autofunciones. Series de Fourier. Nociones sobre convergencia. Obtención de solución formal.
- 4.5. La ecuación de Laplace y la ecuación de Poisson. Resolución mediante el método de separación de variables.
- 4.6. Problemas no homogéneos.
- 4.7. Modelización matemática en problemas de ingeniería y medio ambiente: la ecuación de ondas.
- 4.8. Solución de D'Alembert para el problema de valores iniciales en la ecuación de ondas (cuerda infinita). Unicidad y energía.
- 4.9. El método de separación de variables para cuerdas finitas.

6. Cronograma

UNIVERSIDAD POLITÉCNICA DE MADRID

6.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Tele-enseñanza	Actividades de evaluación
1	Introducción a la asignatura (1 hora) Desarrollo teórico y práctico del Tema 1 (3 horas) Duración: 04:00 LM: Actividad del tipo Lección Magistral			
2	Desarrollo teórico y práctico del Tema 1 Duración: 04:00 PR: Actividad del tipo Clase de Problemas			
3	Desarrollo práctico del Tema 1 (2 horas) Introducción al tema 2 (2 horas) Duración: 04:00 LM: Actividad del tipo Lección Magistral			Una práctica de computación EP: Técnica del tipo Examen de Prácticas Evaluación continua No presencial Duración: 02:00
4	Desarrollo teórico y práctico del Tema 2 Duración: 04:00 PR: Actividad del tipo Clase de Problemas			
5	Desarrollo teórico y práctico del Tema 2 Duración: 04:00 LM: Actividad del tipo Lección Magistral			
6	Desarrollo práctico del Tema 2 (2 horas) Introducción al tema 3 (2 horas) Duración: 04:00 PR: Actividad del tipo Clase de Problemas			
7	Desarrollo teórico y práctico del Tema 3 Duración: 04:00 LM: Actividad del tipo Lección Magistral			Realización de una prueba escrita en grupo EX: Técnica del tipo Examen Escrito Evaluación continua Presencial Duración: 02:30
8	Desarrollo teórico y práctico del Tema 3 Duración: 04:00 PR: Actividad del tipo Clase de Problemas			
9	Desarrollo teórico y práctico del Tema 4 Duración: 04:00 LM: Actividad del tipo Lección Magistral			
10	Desarrollo teórico y práctico del Tema 4 Duración: 04:00 LM: Actividad del tipo Lección Magistral			Una práctica de computación EP: Técnica del tipo Examen de Prácticas Evaluación continua No presencial Duración: 02:00
11	Desarrollo teórico y práctico del Tema 4 Duración: 04:00 PR: Actividad del tipo Clase de Problemas			

	Desarrollo teórico y práctico del Tema 4		
12	Duración: 04:00		
	LM: Actividad del tipo Lección Magistral		
	Desarrollo teórico y práctico del Tema 4		Realización de una prueba escrita
	Duración: 04:00		individual
	LM: Actividad del tipo Lección Magistral		EX: Técnica del tipo Examen Escrito
13			Evaluación continua
			Presencial
			Duración: 02:30
	Desarrollo práctico del Tema 4 (2 horas)		
14	Repaso global de la asignatura (2 horas)		
14	Duración: 04:00		
	PR: Actividad del tipo Clase de Problemas		
15			
16			
			Realización de una prueba escrita global
			sobre el contenido de toda la asignatura
			EX: Técnica del tipo Examen Escrito
			Evaluación continua
			Presencial
			Duración: 02:00
17			Realización de una prueba escrita global
			sobre el contenido de toda la asignatura
			EX: Técnica del tipo Examen Escrito
			Evaluación sólo prueba final
			Presencial
			Duración: 03:30
			Duracion, 00.00

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

* El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
3	Una práctica de computación	EP: Técnica del tipo Examen de Prácticas	No Presencial	02:00	5%	0 / 10	CE1 CG1 CG3 CG7
7	Realización de una prueba escrita en grupo	EX: Técnica del tipo Examen Escrito	Presencial	02:30	20%	0/10	CE1 CG5 CG10 CG3 CG6
10	Una práctica de computación	EP: Técnica del tipo Examen de Prácticas	No Presencial	02:00	5%	0/10	CE1 CG1 CG2 CG3 CG7
13	Realización de una prueba escrita individual	EX: Técnica del tipo Examen Escrito	Presencial	02:30	20%	0 / 10	CE1 CG5 CG10 CG6
17	Realización de una prueba escrita global sobre el contenido de toda la asignatura	EX: Técnica del tipo Examen Escrito	Presencial	02:00	50%	2.5 / 10	CE1 CG5 CG10 CG6

7.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
17	Realización de una prueba escrita global sobre el contenido de toda la asignatura	EX: Técnica del tipo Examen Escrito	Presencial	03:30	100%	5/10	CE1 CG1 CG2 CG5 CG10 CG3 CG6 CG7

7.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

7.2. Criterios de evaluación

La evaluación continua consta de dos partes:

- Un 50% correspondiente a un examen escrito referido al contenido total de la asignatura y común a todos los grupos.
 - Este examen se celebra en enero, coincidente con el examen final; es de tipo práctico y su contenido parcial o total puede ser 'tipo test'.
- Un 50% asignado por el profesor de cada grupo que se desglosa en:
 - Una prueba (individual o en grupo en función de la situación epidemiológica) alrededor de la séptima semana (PEC1), con un valor de 20 puntos sobre 50
 - Una prueba individual escrita en torno a la decimotercera semana (PEC2), con peso 20 sobre 50.
 - o Dos prácticas de computación (semanas 3ª y 10ª) con peso 10 sobre 50

La evaluación por **examen final** consta de un examen escrito global único referido al contenido total de la asignatura que se especifica en su temario.

IMPORTANTE Los estudiantes que deseen renunciar a la Evaluación Continua y opten por Examen Final deberán comunicarlo al coordinador de la asignatura mediante correo electrónico. Día límite para renunciar:

∘ 8 de octubre de 2021, 23:59 horas.

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
E. Sánchez, J. González y J. Gutiérrez. Sistemas Dinámicos. Una introducción a través de ejercicios. Sección de Publicaciones de la E.T.S.I. Industriales de la U.P.M.	Bibliografía	Libro escrito por profesores del Departamento, cuyo contenido se adapta al programa de la asignatura. Es de orientación práctica.
Ecuaciones Diferenciales. Exámenes resueltos de Grado	Otros	Es una publicación que contiene todas las pruebas globales de Ecuaciones Diferenciales que se han propuesto desde la implantación de los estudios de Grado. Contiene la solución de dichas pruebas y se actualiza cada curso académico.
M. Braun. Ecuaciones diferenciales y sus aplicaciones. Grupo Editorial Iberoamericana, 1990.	Bibliografía	
R. K. Nagle, E. B. Saff. Fundamentos de ecuaciones diferenciales 2ª ed. Addison-Wesley Iberoamericana, 1992.	Bibliografía	
R. Haberman. Applied partial differential equations with fourier series and boundary value problems. Pearson Prentice Hall, 2004.	Bibliografía	

9. Otra información

UNIVERSIDAD POLITÉCNICA DE MADRID

9.1. Otra información sobre la asignatura

La modalidad de docencia a impartir se corresponderá en cada momento con lo que establezca la normativa/legislación vigente.