PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

53001346 - Técnicas De Caracterización De Superficies Y Láminas Delgadas.

PLAN DE ESTUDIOS

05BA - Master Universitario En Plasma, Laser Y Tecnologia De Superficie

CURSO ACADÉMICO Y SEMESTRE

2021/22 - Segundo semestre

Índice

Guía de Aprendizaje

UNIVERSIDAD POLITÉCNICA DE MADRID

1. Datos descriptivos	1
2. Profesorado	1
3. Conocimientos previos recomendados	
4. Competencias y resultados de aprendizaje	3
5. Descripción de la asignatura y temario	
6. Cronograma	
7. Actividades y criterios de evaluación	
8. Recursos didácticos	

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	53001346 - Técnicas de Caracterización de Superficies y Láminas Delgadas.
No de créditos	4 ECTS
Carácter	Obligatoria
Curso	Primer curso
Semestre	Segundo semestre
Período de impartición	Febrero-Junio
Idioma de impartición	Castellano
Titulación	05BA - Master Universitario en Plasma, Laser y Tecnologia de Superficie
Centro responsable de la titulación	05 - Escuela Tecnica Superior De Ingenieros Industriales
Curso académico	2021-22

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Rafael Casquel Del Campo (Coordinador/a)		rafael.casquel@upm.es	

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

2.3. Profesorado externo

Nombre	Correo electrónico	Centro de procedencia
Fernando Agulló Rueda	far@csic.es	Instituto de Ciencia de Materiales de Madrid- CSIC
Cristina Ruiz Rojas	tcrojas@csic.es	Instituto de Ciencia de materiales de Sevilla-CSIC
Isabel Montero Herrero	imontero@csic.es	Instituto de Ciencia de Materiales de Madrid- CSIC
Francisco Yubero Valencia	yubero@csic.es	Instituto de ciencia de materiales de Sevilla- CSIC
Carlos Sánchez Sánchez	cssanchez@csic.es	Instituto de Ciencia de Materiales de Sevilla- CSIC
María Eugenia Dávila Benitez	mdavila@csic.es	Institu de Ciencia de Materiales de Madrid

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

El plan de estudios Master Universitario en Plasma, Laser y Tecnologia de Superficie no tiene definidas asignaturas previas recomendadas para esta asignatura.

3.2. Otros conocimientos previos recomendados para cursar la asignatura

- Graduados en Física, Química, Ingeniería de Materiales o similares

4. Competencias y resultados de aprendizaje

4.1. Competencias

- CB10 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- CB7 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- CB8 Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
- CB9 Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
- CE18 Conocer los procesos utilizados para la modificación superficial de materiales por haces de iones y el crecimiento de capas delgadas.
- CE22 Planificar y ejecutar bajo supervisión experimentos relacionados con la ingeniería de superficie y/o la tecnología de vacío. Analizar los resultados, evaluando su margen de error, extraer conclusiones, y comparar los resultados con los correspondientes a materiales reales tratados en la industria de forma análoga a lo realizado en el laboratorio.
- CE4 Conocer los principales procedimientos utilizados para la modificación superficial de materiales y el crecimiento de capas delgadas dentro del contexto más amplio de la tecnología de superficie y ser capaz de decidir qué procedimiento es el más adecuado para un proceso dado.
- CE5 Conocer algunas nociones básicas sobre ingeniería de superficies y caracterización de las mismas -particularmente en lo relativo al espesor- así como sus aplicaciones en los procesos de modificación de las propiedades superficiales de los materiales
- CG1 Capacidad de interpretar y comprender textos científicos y técnicos especializados en las tecnologías objeto de estudio en el master.
- CG11 Fomentar en los estudiantes las siguientes capacidades y habilidades: análisis y síntesis, organización y planificación, comunicación oral y escrita, resolución de problemas, toma de decisiones, trabajo en equipo,

razonamiento crítico, aprendizaje autónomo, creatividad, capacidad de aplicar los conocimientos teóricos en la práctica, uso de Internet como medio de comunicación y como fuente de información.

- CG3 Ser capaz de desarrollar por sí mismos trabajos prácticos y teóricos sobre los temas del curso.
- CG4 Discriminar los principios de funcionamiento de las distintas tecnologías y ser capaz de tomar decisiones sobre equipos y procesos a implementar en la industria, así como sobre compras, alquiler, etc.
- CG5 Conocer los últimos avances en las tecnologías y procesos objeto del curso.
- CG6 Ser capaces de interpretar críticamente los resultados de los análisis de los procesos y materiales modificados por láser y plasmas

4.2. Resultados del aprendizaje

- RA4 CB10 Capacidad de interpretar y comprender textos científicos y técnicos especializados en las tecnologías objeto de estudio en el master.
- RA8 Fomentar en los estudiantes las siguientes capacidades y habilidades: análisis y síntesis, organización y planificación, comunicación oral y escrita, resolución de problemas, toma de decisiones, trabajo en equipo, razonamiento crítico, aprendizaje autónomo, creatividad, capacidad de aplicar los conocimientos teóricos en la práctica, uso de Internet como medio de comunicación y como fuente de información.
- RA1 Cubrir las competencias y los contenidos correspondientes a la materia
- RA10 Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- RA6 Ser capaz de desarrollar por sí mismos trabajos prácticos y teóricos sobre los temas del curso.

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

Bases conceptuales de las técnicas de caracterización de superficies y láminas delgadas.

5.2. Temario de la asignatura

- 1. Espectroscopias de fotoelectrones y electrones Auger (XPS, AES, UPS y fotoemisión por radicación sincrotrón). Parte I: análisis de Superficie: composición Química, estados de oxidación y estructura electrónica.
- 2. Espectroscopias de fotoelectrones y electrones Auger (XPS, AES, UPS y fotoemisión por radicación sincrotrón). Parte II: Perfiles de composición en profundidad mediante bombardeo iónico.
- 3. Análisis de composición mediante haces de iones (RBS, ERDA, PIXE, NRA, ISS, TOF-SIMS)
- 4. Espectroscopía de absorción de rayos X
- 5. Microscopías de campo cercano (AFM y STM)
- 6. Microscopía electrónica de barrido (SEM) y de haz iónico focalizado (FIB)
- 7. Microscopía de Transmisión (HRTEM, STEM-HAADF) y difraccíon de electrones (ED)
- 8. Análisis químico por Energía Dispersiva de Rayos X (EDS) y Espectroscopía de perdida de energía de los electrones (EELS)
- 9. Caracterización Óptica mdediante Espectroscopías Ultravioleta/Visible.
- 10. Espectroscopías Vibracionales (FT-IR y Raman).

6. Cronograma

6.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Tele-enseñanza	Actividades de evaluación
1	Clase presencial Duración: 02:00 LM: Actividad del tipo Lección Magistral			
2	Clase presencial Duración: 02:00 LM: Actividad del tipo Lección Magistral			
3	Clase presencial Duración: 02:00 LM: Actividad del tipo Lección Magistral			
4	Clase presencial Duración: 02:00 LM: Actividad del tipo Lección Magistral			
5	Clase presencial Duración: 02:00 LM: Actividad del tipo Lección Magistral	Sesión de laboratorio Duración: 02:30 PL: Actividad del tipo Prácticas de Laboratorio		
6	Clase presencial Duración: 02:00 LM: Actividad del tipo Lección Magistral			
7	Clase presencial Duración: 02:00 LM: Actividad del tipo Lección Magistral	Sesión de laboratorio Duración: 02:30 PL: Actividad del tipo Prácticas de Laboratorio		
8	Clase presencial Duración: 02:00 LM: Actividad del tipo Lección Magistral			
9	Clase presencial Duración: 02:00 LM: Actividad del tipo Lección Magistral			
10	Clase presencial Duración: 02:00 LM: Actividad del tipo Lección Magistral			Informe de prácticas Tl: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Presencial Duración: 00:00
11				
12		Sesión de laboratorio Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		
13	Seminario 1 Duración: 03:30 OT: Otras actividades formativas		Duración: 02:00	Trabajos realizados de forma autónoma Tl: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final Presencial Duración: 00:00

UNIVERSIDAD POLITÉCNICA DE MADRID

14			
15	Seminario 2 Duración: 03:30 OT: Otras actividades formativas		
16			
17			Examen EX: Técnica del tipo Examen Escrito Evaluación continua y sólo prueba final No presencial Duración: 04:00

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

^{*} El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
10	Informe de prácticas	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	10%	/10	CE5 CG4 CG11 CG5 CB9 CB8
13	Trabajos realizados de forma autónoma	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	10%	/ 10	
17	Examen	EX: Técnica del tipo Examen Escrito	No Presencial	04:00	80%	/10	CE18 CE22 CG4 CG11 CG6 CG3 CG1 CG5 CB7 CB9 CB10 CE4 CE5

7.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
10	Informe de prácticas	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	10%	/10	CE5 CG4 CG11 CG5 CB9 CB8

UNIVERSIDAD POLITÉCNICA DE MADRID

13	Trabajos realizados de forma autónoma	TI: Técnica del tipo Trabajo Individual	Presencial	00:00	10%	/ 10	
17	Examen	EX: Técnica del tipo Examen Escrito	No Presencial	04:00	80%	/10	CE18 CE22 CG4 CG11 CG6 CG3 CG1 CG5 CB7 CB9 CB10 CE4 CE5

7.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

7.2. Criterios de evaluación

Aclaraciones:

En esta asignatura se realizará una evaluación continua, que constará de:

- 1. Exámenes (80%). Al finalizar cada una de los diferentes temas que conforman el programa de la misma, se realizará una prueba tipo examen para evaluar los contenidos desarrollados en el mismo. La nota de esta parte correspondiente a será la media aritmética de las notas de los exámenes realizados para los diferentes temas.
- 2. Informes/memorias de prácticas (10%). Para evaluar los contenidos procedimentales desarrollados en las prácticas de la asignatura.
- 3. Trabajos y proyectos (10%).

Para aquellos alumnos que no superen la evaluación continua será posible realizar un examen final.

Las adaptaciones metodológicas para los alumnos a tiempo parcial se decidirán en reuniones entre el profesorado y los alumnos interesados a fin de personalizar los posibles casos que se presenten.

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
- An Introduction to Surface Analysis		
by XPS and AES, John F. Watts,	Bibliografía	
John Wolstenholme (Wiley 2019).		
Practical Surface Analysis: Auger		
and X-Ray Electron Spectroscopy".	Diblicantic	
Vol.1 Eds. D. Briggs and M.P.Seah	Bibliografía	
(John Wiley & Sons, 1990).		
Handbook of X-Ray Photoelectron		
Spectroscopy", Ed. G.E. Muilenburg	Bibliografía	
(Perking Elmer Corp., 1999)		
Métodos Ópticos de Análisis. E. D.	Diblicarofíc	
Olsen (Reverté, 1990)	Bibliografía	

Optical Diagnostics for Thin Film Processing. P. Herman (Academic Press, 1996)	Bibliografía	
Espectroscopía y Estructura. R. N. Dixon (Alhambra, 1967)	Bibliografía	
P. Larkin, Infrared and Raman Spectroscopy (Elsevier Science, 2011)	Bibliografía	
Handbook Of Modern Ion Beam Materials Analysis. J.R. Tesmer, M. Nastasi, Eds. (MRS,1995)	Bibliografía	
Ion Beams for Materials Analysis. J.R. Bird, J.S. Williams, Eds (Academic Press Australia, 1989)	Bibliografía	
X-Ray Absorption Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. D.C. Koenigsberger, R. Prins, (Wiley1988)	Bibliografía	
Scanning Electron Microscopy and X-Ray Microanalysis I. Goldstein (Plennun press, 1992).	Bibliografía	
Scanning Tunneling Microscopy. J. A. Stroscio , W. J. Kaiser (Academic Press,1993).	Bibliografía	
Transmission Electron Microscopy Williams, D. B., Carter, C. B.:, Plenum Press, 1996.	Bibliografía	
Introduction to Focused Ion Beams: Instrumentation, theory, Techniques and Practice. Edited by Lucille A Giannuzzi Fred A. Stevie, 2005	Bibliografía	
Se complementará con artículos científicos de relevancia y de actualidad publicados en revistas internacionales relacionadas con el temario de la asignatura	Bibliografía	