PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

E.T.S. de Ingenieros Industriales

53002018 - Diseño Avanzado De Sistemas Fotovoltaicos

PLAN DE ESTUDIOS

05BK - Master Universitario En Ingenieria De La Energia

CURSO ACADÉMICO Y SEMESTRE

2021/22 - Segundo semestre

Índice

Guía de Aprendizaje

UNIVERSIDAD POLITÉCNICA DE MADRID

1. Datos descriptivos	1
2. Profesorado	
3. Conocimientos previos recomendados	
4. Competencias y resultados de aprendizaje	2
5. Descripción de la asignatura y temario	4
6. Cronograma	6
7. Actividades y criterios de evaluación	8
8. Recursos didácticos	12
9. Otra información	13

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	53002018 - Diseño Avanzado de Sistemas Fotovoltaicos
No de créditos	3 ECTS
Carácter	Optativa
Curso	Primer curso
Semestre	Segundo semestre
Período de impartición	Febrero-Junio
Idioma de impartición	Castellano
Titulación	05BK - Master Universitario en Ingenieria de la Energia
Centro responsable de la titulación	05 - Escuela Tecnica Superior De Ingenieros Industriales
Curso académico	2021-22

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Julio Amador Guerra (Coordinador/a)	A128C ETSIDI	julio.amador@upm.es	Sin horario. Ver enlace: http://pr ogramas.etsidi.upm .es/SOA/tutorias/

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

El plan de estudios Master Universitario en Ingenieria de la Energia no tiene definidas asignaturas previas recomendadas para esta asignatura.

3.2. Otros conocimientos previos recomendados para cursar la asignatura

- Esta asignatura debe cursarse de forma simultánea con la asignatura Energía Solar Fotovoltaica

4. Competencias y resultados de aprendizaje

4.1. Competencias

- CB10 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- CB9 Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
- CE1 Ser capaz de aplicar conocimientos y capacidades a estudiar, analizar y auditar programas de optimización energética en los diferentes sectores industriales, residenciales, domésticos, plantas de potencia y a la industria térmica y de fluidos en general, en los ámbitos de la eficiencia, la diversificación y la reducción de su impacto en el medio ambiente.
- CE11 Analizar el comportamiento energético y control de los sistemas de energías renovables determinando y aplicando criterios innovadores de optimización energética, económica y ambiental, aplicando metodologías de diseño, simulación y análisis de los componentes y sistemas de energías renovables: solares, eólicos, hidráulicos, de biomasa, de energías marinas, geotérmicas y otras energías renovables; para contribuir a su desarrollo tecnológico y a su competitividad con otras tecnologías energéticas.
- CE3 Utilizar las herramientas necesarias para el diseño y análisis de sistemas de generación, trasformación, almacenamiento y utilización de energías nucleares, mecánicas, eléctricas, térmicas e hidráulicas.

- CE8 Disponer de habilidades, criterios y conocimientos para investigar, desarrollar e innovar en el campo de la energía: tecnologías renovables y no renovables, almacenamiento, vectores energéticos, en un contexto de decarbonización del sistema.
- CG1 Aplicar conocimientos de ciencias y tecnologías avanzadas a la práctica profesional o investigadora de la Ingeniería Energética.
- CG2 Poseer capacidad para diseñar, desarrollar, implementar, gestionar y mejorar productos, sistemas y procesos en los distintos ámbitos energéticos, usando técnicas analíticas, computacionales o experimentales avanzadas.
- CG8 Incorporar nuevas tecnologías y herramientas avanzadas de la Ingeniería Energética en sus actividades profesionales o investigadoras.
- CT1 Aplica. Habilidad para aplicar conocimientos científicos, matemáticos y tecnológicos en sistemas relacionados con la práctica de la ingeniería.
- CT11 Usa herramientas. Habilidad para usar las técnicas, destrezas y herramientas ingenieriles modernas necesarias para la práctica de la ingeniería.
- CT12 Es bilingüe. Capacidad de trabajar en un entorno bilingüe (inglés/español).
- CT2 Experimenta. Habilidad para diseñar y realizar experimentos, así como analizar e interpretar datos.
- CT3 Diseña. Habilidad para diseñar un sistema, componente o proceso que alcance los requisitos deseados teniendo en cuenta restricciones realistas tales como las económicas, medioambientales, sociales, políticas, éticas, de salud y seguridad, de fabricación y de sostenibilidad.
- CT4 Trabaja en equipo. Habilidad para trabajar en equipos multidisciplinares.
- CT5 Resuelve. Habilidad para identificar, formular y resolver problemas de ingeniería.
- CT7 Comunica. Habilidad para comunicar eficazmente.
- CT9 Se actualiza. Reconocimiento de la necesidad y la habilidad para comprometerse al aprendizaje continuo.

4.2. Resultados del aprendizaje

- RA118 Realizar el análisis energético de módulos fotovoltaicos
- RA121 Utilizar criterios de eficiencia energética y tecnología disponible para mejorar los sistemas fotovoltaicos
- RA119 Saber aplicar las herramientas específicas de cálculo y simulación para instalaciones fotovoltaicas
- RA117 Ser capaz de evaluar y diseñar instalaciones de energía solar fotovoltaica
- RA46 RA 111 Analizar modelos físicos de radiación solar en la atmósfera terrestre y su influencia en el diseño de sistemas para el aprovechamiento de la energía solar
- RA47 RA 112 Aplicar métodos, los procedimientos y las herramientas para modelar, simular y analizar sistemas de aprovechamiento de energía solar
- RA49 RA165 Conocer las tecnologías y el funcionamiento de los componentes y subsistemas sistemas solares térmicos de baja temperatura y fotovoltaicos
- RA50 RA167 Conocer las características principales de la radiación solar (distribución espectral, variación diaria y anual, mapas de radiación, etc.) y el análisis y tratamiento de datos de radiación solar
- RA51 RA 170 Ser capaz de evaluar y diseñar instalaciones de energía solar térmica de baja temperatura e instalaciones fotovoltaicas

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

El objetivo de la asignatura es el análisis avanzado de bases de datos de radiación solar y el modelado y simulación de sistemas

solares fotovoltaicos.

5.2. Temario de la asignatura

- 1. Cálculo de valores diarios de irradiación solar
- 2. Cálculos de radiación solar sobre la superficie inclinada
- 3. Generación de series sintéticas de irradiancia horizontal
- 4. Determinación del recurso solar para aplicaciones fotovoltaicas
- 5. Monitorización de sistemas fotovoltaicos conectados a red
- 6. Informes energéticos y análisis gráfico de sistemas fotovoltaicos
- 7. Modelado energético de los componentes de un sistema fotovoltaico
- 8. Modelado de las pérdidas de energía en sistemas fotovoltaicos conectados a red

6. Cronograma

6.1. Cronograma de la asignatura *

Sem	Actividad presencial en aula	Actividad presencial en laboratorio	Tele-enseñanza	Actividades de evaluación
1	Presentación de la asignatura Duración: 02:00 LM: Actividad del tipo Lección Magistral			
2	Tema 1 Duración: 02:00 PR: Actividad del tipo Clase de Problemas			
3	Tema 2 Duración: 01:00 LM: Actividad del tipo Lección Magistral	Tema 1 Duración: 01:00 PL: Actividad del tipo Prácticas de Laboratorio		
4	Tema 3 Duración: 01:00 LM: Actividad del tipo Lección Magistral	Tema 2 Duración: 01:00 PL: Actividad del tipo Prácticas de Laboratorio		
5	Tema 4 Duración: 01:00 LM: Actividad del tipo Lección Magistral	Tema 4 Duración: 01:00 PL: Actividad del tipo Prácticas de Laboratorio		
6	Tema 5 Duración: 02:00 LM: Actividad del tipo Lección Magistral			Tarea temas 1 al 4 TG: Técnica del tipo Trabajo en Grupo Evaluación continua Presencial Duración: 02:00
7		Tema 5 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		
8	Tema 5 Duración: 01:00 LM: Actividad del tipo Lección Magistral	Temas 5 Duración: 01:00 PL: Actividad del tipo Prácticas de Laboratorio		
9		Temas 5 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio		
10	Tema 6 Duración: 01:00 LM: Actividad del tipo Lección Magistral	Tema 6 Duración: 01:00 PL: Actividad del tipo Prácticas de Laboratorio		
11	Tema 7 Duración: 01:00 LM: Actividad del tipo Lección Magistral	Tema 6 Duración: 01:00 PL: Actividad del tipo Prácticas de Laboratorio		

UNIVERSIDAD POLITÉCNICA DE MADRID

12	Tema 8 Duración: 01:00 LM: Actividad del tipo Lección Magistral	Tema 7 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio Tema 8 Duración: 01:00 PL: Actividad del tipo Prácticas de Laboratorio	
14		Tema 8 Duración: 02:00 PL: Actividad del tipo Prácticas de Laboratorio	Nota de clase OT: Otras técnicas evaluativas Evaluación continua Presencial Duración: 01:00
15			Tarea temas 5 al 8 TG: Técnica del tipo Trabajo en Grupo Evaluación continua Presencial Duración: 02:00
16			
17			Examen evaluación continua EX: Técnica del tipo Examen Escrito Evaluación continua Presencial Duración: 02:30 Examen sólo prueba final EX: Técnica del tipo Examen Escrito Evaluación sólo prueba final Presencial Duración: 03:30

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

^{*} El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación continua

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
6	Tarea temas 1 al 4	TG: Técnica del tipo Trabajo en Grupo	Presencial	02:00	15%	5/10	CE1 CE8 CT1 CT4 CG1 CB9 CB10 CT2 CT3 CT5 CT7 CT9 CT11 CT12 CE3 CG2 CG8 CE11
14	Nota de clase	OT: Otras técnicas evaluativas	Presencial	01:00	10%	5/10	CT1 CT4 CE1 CE8 CG1 CB9 CB10 CT2 CT3 CT5 CT7 CT9 CT11 CT12 CE3 CG2 CG8 CE11

UNIVERSIDAD POLITÉCNICA DE MADRID

							CE8
							CT1
							CE1
							CT4
							CG1
							CB9
							CB10
		TG: Técnica					CT2
15	Tarea temas 5 al 8	del tipo	Presencial	02:00	50%	5/10	СТЗ
"	Tarea terrias o ar o	Trabajo en	1 resericiai	02.00	3070	37 10	CT5
		Grupo					CT7
							СТ9
							CT11
							CT12
							CE3
							CG2
							CG8
							CE11
							CB10
							CT2
							СТ3
							CT5
							CT7
							СТ9
		EV. Tái					CT11
		EX: Técnica					CT12
17	Examen evaluación continua	del tipo	Presencial	02:30	35%	5/10	CE3
		Examen					CG2
		Escrito					CG8
							CE11
							CE1
							CE8
							CT1
							CG1
							СВ9

7.1.2. Evaluación sólo prueba final

Sem	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
17	Examen sólo prueba final	EX: Técnica del tipo Examen Escrito	Presencial	03:30	100%	5/10	CE1 CE8 CT1 CT4 CG1 CB9 CB10 CT2 CT3 CT5 CT7 CT9 CT11 CT12

			CE3
			CG2
			CG8
			CE11

7.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

7.2. Criterios de evaluación

EVALUACIÓN CONTINUA

Requisitos para aprobar la asignatura por evaluación continua:

- La asistencia es obligatoria. Las faltas deben justificarse documentalmente y no ser superiores al 20 % del tiempo total de clase.
- Todas las tareas propuestas deben aprobarse: mínimo de 5 puntos sobre 10
- La nota mínima en cada apartado del examen de evaluación continua debe ser de 3 puntos sobre 10
- La nota mínima en el examen de evaluación continua debe ser de 5 puntos sobre 10

TAREAS:

- Tarea de radiación solar: ejercicios propuestos por los profesores de la asignatura durante el desarrollo de las clases correspondientes a Modelos de radiación solar, temas 1 a 4
- Tarea modelado y simulación de sistemas fotovoltaicos: ejercicios propuestos por los profesores de la asignatura durante el desarrollo de las

clases correspondientes a modelado y simulación de sistemas fotovoltaicos, temas 5 a 8

Examen de evaluación continua: examen de teoría y problemas sobre todos los contenidos de la asignatura.

en la fecha establecida por jefatura de estudios para el examen final.

Nota asignatura evaluación continua = 10 % Nota de clase + 15 % Nota tarea BBDD Radiación Solar + 50 % Nota Tarea Modelado SFV + 35 % Nota examen

La nota de clase tendrá en cuenta la participación en las distintas actividades realizadas en la asignatura. La nota de clase debe ser superior a 5 puntos sobre 10.

Dado que el peso de los trabajos en grupo es alto la suma de todas las notas es del 110 % para facilitar alcanzar la nota máxima en la asignatura.

En los trabajos en grupo cada estudiante deberá evaluar el trabajo en equipo del resto de participantes.

EVALUACIÓN SÓLO PRUEBA FINAL

Examen de teoría y problemas de los contenidos de la asignatura en la fecha establecida por jefatura de estudios

Nota asignatura = 100 % Nota Examen

Requisitos: no debe haber ninguna pregunta teórica o problema con menos de 3 puntos sobre 10

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
SISTEMA DE SIMULACIÓN FOTOVOLTAICO	Recursos web	http://www.sisifo.info/
Luque A. y Hegedus S. (2003). Handbook of photovoltaic science and engineering. Editorial: Wiley.	Bibliografía	
Eiker, U. (2001). Solar Technologies for Buildings. Editorial: Wiley.	Bibliografía	
Artículos de investigación sobre los contenidos de la asignatura	Bibliografía	Diversos artículos de investigación sobre los contenidos de la asignatura que estarán disponibles en Moodle
Terraza Fotovoltaica de la ETSIDI UPM	Equipamiento	Sistemas fotovoltaicos monitorizados instalados en la terraza de la ETSIDI UPM

9. Otra información

9.1. Otra información sobre la asignatura

Se utilizará el Software PVsyst como herramienta de modelado y simulación de sistemas fotovoltaicos.

Por los objetivos y contenidos de esta asignatura contribuye directamente a los Objetivos de Desarrollo Sostenible siguientes: ODS 7 Energía asequible y no contaminante, en sus metas: Acceso universal a la energía moderna, Aumentar el porcentaje mundial de energía renovable y Duplicar la mejora de la eficiencia energética; y al ODS 13 Acción por el clima, en sus metas de reducción de emisiones de gases de efecto invernadero, resiliencia climática de la infraestructura energética y estrategias de energía sostenible.