PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

53001233 - Ampliacion De Resistencia De Materiales

PLAN DE ESTUDIOS

05AZ - Master Universitario En Ingenieria Industrial

CURSO ACADÉMICO Y SEMESTRE

2022/23 - Primer semestre

Índice

Guía de Aprendizaje

UNIVERSIDAD POLITÉCNICA DE MADRID

1. Datos descriptivos	1
2. Profesorado	
3. Competencias y resultados de aprendizaje	
4. Descripción de la asignatura y temario	
5. Cronograma	
6. Actividades y criterios de evaluación	
7. Recursos didácticos	

1. Datos descriptivos

1.1. Datos de la asignatura

53001233 - Ampliacion de Resistencia de Materiales			
3 ECTS			
Obligatoria			
Primer curso			
Primer semestre			
Septiembre-Enero			
Castellano			
05AZ - Master Universitario en Ingenieria Industrial			
05 - Escuela Técnica Superior De Ingenieros Industriales			
2022-23			

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
David Portillo Garcia (Coordinador/a)		david.portillo@upm.es	
Ignacio Romero Olleros		ignacio.romero@upm.es	Sin horario.

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Competencias y resultados de aprendizaje

3.1. Competencias

- (a) APLICA. Habilidad para aplicar conocimientos científicos, matemáticos y tecnológicos en sistemas relacionados con la práctica de la ingeniería.
- (e) RESUELVE. Habilidad para identificar, formular y resolver problemas de ingeniería.
- (k) USA HERRAMIENTAS. Habilidad para usar las técnicas, destrezas y herramientas ingenieriles modernas necesarias para la práctica de la ingeniería.

3.2. Resultados del aprendizaje

- RA106 Comprender la sistematización en el cálculo y su implementación en ordenadores como aproximación al uso de esta herramienta en el cálculo de estructuras.
- RA104 Comprender que el Cálculo de Estructuras es una de las fases que conforman el proceso global del proyecto de una estructura; y en ella habrá de determinarse, mediante la aplicación de los Principios de la Mecánica de los Sólidos Deformables, si la estructura podrá desempeñar la función para la que inicialmente fue concebida.
- RA105 Relacionar los desplazamientos y esfuerzos que se producen en una estructura de barras con el sistema de solicitaciones aplicado sobre la misma; teniendo en cuenta que han de satisfacerse las relaciones básicas de Equilibrio, Compatibilidad y Comportamiento.

4. Descripción de la asignatura y temario

4.1. Descripción de la asignatura

This is a course designed for students in the Master of Science in Industrial Engineering that have a background in Engineering, but do not have a minor in the mechanical subjects. As such, the goals of the course is to provide a solid understanding of the fundamentals of Stength of Materials and Structural Analysis, and the link it with other branches of Engineering. More specifically, the course will knowingly leave aside traditionally taught skills such as the analytical solution of simple problems and focus on general principles and the computational implementation of solution methods. For that, the main goals of the course are:

- ? To understand the underlying principles behind structural analysis
- ? To calculate stress resultants and displacements in 2d structures of bars and beams
- ? To be able to determine when a structure will withstand given loads, or fail
- ? To learn how to develop a "general purpose" program to calculate structures and use it to design simple ones

4.2. Temario de la asignatura

- 1. Introduction to ASM and structural ana
- 2. Python: installation and basic notions
- 3. Basic theory
 - 3.1. Equilibrium
 - 3.2. Compatibility and constitutive relation
 - 3.3. Work and energy
- 4. Trusses
 - 4.1. Energy
 - 4.2. Resultants
 - 4.3. Stiffness
 - 4.4. Programming
 - 4.5. Stresses: point-by-point calculation

- 5. Beams
 - 5.1. Energy
 - 5.2. Resultants
 - 5.3. Stiffness
 - 5.5. Stresses: point-by-point calculation
- 6. Failure
 - 6.1. Elastic limit
 - 6.2. Design

5. Cronograma

5.1. Cronograma de la asignatura *

Sem	Actividad en aula	Actividad en laboratorio	Tele-enseñanza	Actividades de evaluación
1	Introduction to ASM and structural analysis Duración: 02:00 LM: Actividad del tipo Lección Magistral			
2	Python: installation and basic notions Duración: 02:00 LM: Actividad del tipo Lección Magistral			Assignment 1 TI: Técnica del tipo Trabajo Individual Evaluación continua Presencial Duración: 02:00
3	Basic theory Duración: 02:00 LM: Actividad del tipo Lección Magistral			
4	Basic theory Duración: 02:00 LM: Actividad del tipo Lección Magistral			Assignment 2 TI: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 02:00
5	Basic theory Duración: 02:00 LM: Actividad del tipo Lección Magistral			
6	Trusses Duración: 02:00 LM: Actividad del tipo Lección Magistral			Assignment 3 TI: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 02:00
7	Trusses Duración: 02:00 LM: Actividad del tipo Lección Magistral			
8	Trusses Duración: 02:00 LM: Actividad del tipo Lección Magistral			Assignment 4 TI: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 02:00
9	Beams Duración: 02:00 LM: Actividad del tipo Lección Magistral			
10	Beams Duración: 02:00 LM: Actividad del tipo Lección Magistral			Assignment 5 TI: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 02:00

11	Beams Duración: 02:00 LM: Actividad del tipo Lección Magistral		
12	Beams Duración: 02:00 LM: Actividad del tipo Lección Magistral		Assignment 6 TI: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 00:00
13	Failure Duración: 02:00 PR: Actividad del tipo Clase de Problemas		
14	Failure Duración: 02:00 LM: Actividad del tipo Lección Magistral		Assignment 7 TI: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 02:00
15			
16			
17			Final exam EX: Técnica del tipo Examen Escrito Evaluación continua Presencial Duración: 00:00

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

^{*} El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

6. Actividades y criterios de evaluación

6.1. Actividades de evaluación de la asignatura

6.1.1. Evaluación (progresiva)

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
2	Assignment 1	TI: Técnica del tipo Trabajo Individual	Presencial	02:00	7.14%	/ 10	(k) (a) (e)
4	Assignment 2	TI: Técnica del tipo Trabajo Individual	No Presencial	02:00	7.14%	/ 10	(e) (k) (a)
6	Assignment 3	TI: Técnica del tipo Trabajo Individual	No Presencial	02:00	7.14%	/ 10	(a) (e) (k)
8	Assignment 4	TI: Técnica del tipo Trabajo Individual	No Presencial	02:00	7.14%	/ 10	(a) (e) (k)
10	Assignment 5	TI: Técnica del tipo Trabajo Individual	No Presencial	02:00	7.14%	/ 10	(a) (e) (k)
12	Assignment 6	TI: Técnica del tipo Trabajo Individual	No Presencial	00:00	7.14%	/ 10	(a) (e) (k)
14	Assignment 7	TI: Técnica del tipo Trabajo Individual	No Presencial	02:00	7.16%	/ 10	(a) (e) (k)
17	Final exam	EX: Técnica del tipo Examen Escrito	Presencial	00:00	50%	4/10	(a) (e) (k)

6.1.2. Prueba evaluación global

No se ha definido la evaluacion sólo por prueba final.

6.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

6.2. Criterios de evaluación

Students at the UPM must be evaluated using a progressive gradient system. In this course, the grading will be based on (approximately) weekly assignments and a final exam or project. These will be done individually or in groups, as indicated in each case. The final grade of the course will be the average between the overall assignments grade and the final exam one.

7. Recursos didácticos

7.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
Introduction to mechanics of solids, Popov, E. P	Bibliografía	
Mecánica de estructuras. Libro 1, Cervera, M.	Bibliografía	
The linearized theory of elasticity, Slaughter, W.	Bibliografía	
Mecánica de sólidos (2022), Romero, I.	Bibliografía	
Engineering Mechanics of Deformable Solids, Govindjee, S	Bibliografía	