

ASIGNATURA

55001036 - Operaciones De Separacion li

PLAN DE ESTUDIOS

05IQ - Grado En Ingeniería Química

CURSO ACADÉMICO Y SEMESTRE

2022/23 - Segundo semestre

Índice

Guía de Aprendizaje

UNIVERSIDAD POLITÉCNICA DE MADRID

1. Datos descriptivos	1
2. Profesorado	1
3. Conocimientos previos recomendados	
4. Competencias y resultados de aprendizaje	2
5. Descripción de la asignatura y temario	
6. Cronograma	
7. Actividades y criterios de evaluación	
8. Recursos didácticos	

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	55001036 - Operaciones de Separacion II			
No de créditos	6 ECTS			
Carácter	Optativa			
Curso	Tercero curso			
Semestre	Sexto semestre			
Período de impartición	Febrero-Junio			
Idioma de impartición	Castellano			
Titulación	05IQ - Grado en Ingeniería Química			
Centro responsable de la titulación	05 - Escuela Técnica Superior De Ingenieros Industriales			
Curso académico	2022-23			

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Santos Galan Casado (Coordinador/a)	Tec. Quím. 205	santos.galan@upm.es	Sin horario. Pedir cita

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

- Operaciones De Separacion I
- Mecanica De Fluidos
- Transferencia De Calor
- Quimica Fisica

3.2. Otros conocimientos previos recomendados para cursar la asignatura

El plan de estudios Grado en Ingeniería Química no tiene definidos otros conocimientos previos para esta asignatura.

4. Competencias y resultados de aprendizaje

4.1. Competencias

- CE 19 Conocimientos sobre balances de materia y energía, biotecnología, transferencia de materia, operaciones de separación, ingeniería de la reacción química, diseño de reactores, y valoración y transformación de materias primas y recursos energéticos
- CG 1 Conocer y aplicar los conocimientos de ciencias y tecnologías básicas a la práctica de la Ingeniería Industria
- CG 2 Poseer la capacidad para diseñar, desarrollar, implementar, gestionar y mejorar productos, sistemas y procesos en los distintos ámbitos industriales, usando técnicas analíticas, computacionales o experimentales apropiadas
- CG 3 Aplicar los conocimientos adquiridos para identificar, formular y resolver problemas en contextos amplios, siendo capaces de integrar los trabajando en equipos multidisciplinares
- CG 5 Comunicar conocimientos y conclusiones, tanto de forma oral como escrita, a públicos especializados y no especializados de modo claro y sin ambigüedades

CG 6 - Poseer las habilidades de aprendizaje que permitan continuar estudiando a lo largo de toda la vida para un desarrollo profesional adecuado

4.2. Resultados del aprendizaje

- RA140 Elaboración de documentos técnicos a nivel de ingeniería básica
- RA139 Análisis, diseño y optimización de operaciones industriales de separación por transferencia de materia
- RA141 Uso de programas profesionales de diseño
- RA276 EUR-ACE RA 1.2 Conocimiento y comprensión de las disciplinas de ingeniería propias de su especialidad, en el nivel necesario para adquirir el resto de competencias del título, incluyendo nociones de los últimos adelantos
- RA277 EUR-ACE RA 2.2 La capacidad de identificar, formular y resolver problemas de ingeniería en su especialidad; elegir y aplicar de forma adecuada métodos analíticos, de cálculo y experimentales ya establecidos; reconocer la importancia de las restricciones sociales, de salud y seguridad, ambientales, económicas e industriales
- RA274 EUR-ACE RA 2.1 La capacidad de analizar productos, procesos y sistemas complejos en su campo de estudio; elegir y aplicar de forma pertinente métodos analíticos, de cálculo y experimentales ya establecidos e interpretar correctamente los resultados de dichos análisis.

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

La asignatura presenta las principales operaciones básicas de separación en ingeniería química habitualmente modeladas y controladas por la transferencia de materia. Para ello, en la primera parte se desarrollan los conocimientos necesarios relativos a la difusión en sistemas multicomponente. La orientación es de tipo práctico, basada en el cálculo y diseño de las unidades, con diferentes grados de profundidad. En función del número de alumnos, se utilizan programas que implementan modelos cinéticos de cálculo.

5.2. Temario de la asignatura

- 1. Difusión molecular
 - 1.1. Definiciones. Formulaciones de Fick y Maxwell-Stefan
 - 1.2. Difusión binaria
 - 1.3. Estimación de difusividades
 - 1.4. Ecuaciones de conservación en sistemas multicomponente
 - 1.5. Difusión en sólidos
- 2. Transferencia en interfases
 - 2.1. Coeficientes de transferencia de materia y condiciones de determinación
 - 2.2. Teoría de la película
 - 2.3. Transferencia simultánea de materia y energía
 - 2.4. Transferencia en régimen turbulento. Analogías
- 3. Operaciones de separación controladas por velocidad de transferencia
 - 3.1. Absorción
 - 3.2. Columnas de relleno
 - 3.3. Adsorción
 - 3.4. Separaciones con membranas
 - 3.5. Secado
 - 3.6. Cristalización

6. Cronograma

6.1. Cronograma de la asignatura *

Sem	Actividad en aula	Actividad en laboratorio	Tele-enseñanza	Actividades de evaluación
1	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			
2	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			
3	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			
4	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			Control escrito EX: Técnica del tipo Examen Escrito Evaluación continua No presencial Duración: 01:00
5	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			
6	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			
7	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			
8	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			Control escrito EX: Técnica del tipo Examen Escrito Evaluación continua No presencial Duración: 01:00
9				
10	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			
11	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral			Control escrito EX: Técnica del tipo Examen Escrito Evaluación continua No presencial Duración: 01:00
12	Teoría y problemas Duración: 02:00 LM: Actividad del tipo Lección Magistral			

13	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral Teoría y problemas Duración: 06:00 LM: Actividad del tipo Lección Magistral		
15	Teoría y problemas Duración: 04:00 LM: Actividad del tipo Lección Magistral		Ejercicio de simulación EP: Técnica del tipo Examen de Prácticas Evaluación continua No presencial Duración: 01:00 Control escrito EX: Técnica del tipo Examen Escrito Evaluación continua No presencial Duración: 01:00
16			
17			Examen final EX: Técnica del tipo Examen Escrito Evaluación sólo prueba final No presencial Duración: 02:00

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

^{*} El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación (progresiva)

Sem.	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
4	Control escrito	EX: Técnica del tipo Examen Escrito	No Presencial	01:00	20%	0/10	CG 6 CG 1 CG 2 CG 3 CG 5 CE 19
8	Control escrito	EX: Técnica del tipo Examen Escrito	No Presencial	01:00	20%	0/10	CG 6 CG 1 CG 2 CG 3 CG 5 CE 19
11	Control escrito	EX: Técnica del tipo Examen Escrito	No Presencial	01:00	20%	0/10	CG 6 CG 1 CG 2 CG 3 CG 5 CE 19
15	Ejercicio de simulación	EP: Técnica del tipo Examen de Prácticas	No Presencial	01:00	5%	0/10	CG 6 CG 1 CG 2 CG 3 CG 5 CE 19
15	Control escrito	EX: Técnica del tipo Examen Escrito	No Presencial	01:00	20%	0/10	CG 1 CG 2 CG 3 CG 5 CE 19 CG 6

7.1.2. Prueba evaluación global

Sem	Descripción	Modalidad	Tipo	Duración	Duración	Peso en la	Nota mínima	Competencias
Jeili	Descripcion	Wodandad	Про	Duracion	nota	Nota IIIIIIII	evaluadas	

							CG 6
		EX: Técnica					CG 1
17		del tipo	No Presencial	02:00	80%	5 / 10	CG 2
''	Examen illai	Examen					CG 3
	Escrito	Escrito					CG 5
							CE 19

7.1.3. Evaluación convocatoria extraordinaria

No se ha definido la evaluación extraordinaria.

7.2. Criterios de evaluación

UNIVERSIDAD

- 1. Los conocimientos adquiridos en la asignatura se evalúan mediante cuatro tipos de pruebas:
 - Exámenes, de dos tipos: parciales, que se realizan únicamente durante el curso, y finales, en las convocatorias ordinarias y extraordinarias.
 - Trabajo en clase.
 - o Ejercicio de simulación.
 - Trabajo avanzado

2. Exámenes:

- Los exámenes consisten en ejercicios de cálculo y cuestiones teóricas de respuesta corta o tipo test. Las respuestas de test incorrectas restan puntos (cerca de una cuarta parte de lo que suman las correctas). Se dispone de un formulario para las numéricas. Las preguntas numéricas serán similares o relacionadas con la colección de problemas resueltos en clase, en vídeos o cuya solución se entrega por escrito. Las cuestiones teóricas se referirán al contenido de los apuntes. Se espera que el estudiante tenga la capacidad para interpretar un enunciado técnico y reconocer en él los conocimientos citados.
- Durante el curso los exámenes parciales son cuatro. Tienen una duración de una hora y reparten los temas del curso, con una ponderación de 2 puntos cada uno:
 - 1. Difusión molecular y binaria. Ecuaciones de cambio
 - 2. Transferencia en interfases, régimen turbulento y membranas
 - 3. Absorción y columnas de relleno
 - 4. Adsorción, difusión en sólidos, cristalización y secado
- o Los exámenes finales durarán 2 horas.
- Durante los exámenes, sólo se permitirá el uso de calculadoras no programables de una o dos líneas de pantalla.
- 3. Trabajo en clase.

- Dentro del esquema de aula invertida, el trabajo en clase de los alumnos permite una medida progresiva del aprendizaje que considera facetas difíciles de evaluar en pruebas de corta duración (exámenes), tal como son las tareas que requieren más tiempo de reflexión o revisiones sucesivas de lo hecho. En otro sentido, esta fijación continua de objetivos ayuda al estudiante a seguir el ritmo del curso.
- Considerando la posibilidad de añadir otras y cambiando la ponderación, en principio el trabajo evaluable en las clases consistirá de:
 - 1. Libro de ingeniería. Colección de ejercicios de diseño de unidades de proceso tratadas en la asignatura con formato semi-profesional (0.75 puntos).
 - 2. Preguntas en clase del contenido teórico, de acuerdo con el esquema de estudio por parte del alumno previo a las clases (0.5 puntos).
 - 3. Realización de ejercicios con o sin el ordenador en clase (0.75 punto).
- Aunque el nombre pueda sugerir otra cosa, parte del trabajo podrá ser realizado fuera del horario de clase.

4. Ejercicio de simulación:

- Este ejercicio consiste en el cálculo de una columna de absorción o destilación con modelos cinéticos utilizando un simulador de procesos comercial (Aspen Plus).
- El programa estará disponible a través de la infraestructura de escritorios virtuales de la universidad (escritorio.upm.es).
- Las clases de simulación se impartirán mediante vídeos que el estudiante debe estudiar. A lo largo del curso se realizarán ejercicios en clase para resolver dudas y consolidar conocimientos, pero que requieren el trabajo previo citado.
- El ejercicio de simulación se realizará, probablemente, en la última clase del curso y su valoración es 0.5 puntos.

5. Trabajo avanzado.

- Para la consecución de la máxima calificación es necesario realizar un trabajo de forma individual
 que demuestre ese alto nivel. Este trabajo podrás ser solicitado por los estudiantes, a partir del
 resultado del segundo examen parcial, siempre y cuando la nota media de las mismas sea igual o
 superior a 8. El último momento para hacerlo será tras el resultado de la tercer examen parcial, si
 se sigue cumpliendo la condición anterior.
- El trabajo concreto será propuesto por el profesor y acordado con el estudiante. La calificación máxima del mismo es 1 punto.
- 6. La calificación final se obtiene como una suma ponderada de las diversas pruebas, que difiere en función de la calificación obtenida en exámenes finales o como media de los parciales durante el curso.
 - · Siendo:
 - E_p la nota media de los exámenes parciales, E_o la obtenida en la prueba global ordinaria y E e extraordinaria, cuyo máximo valor en todos los casos es 10.
 - C la nota de trabajo en clase, que sólo se puede obtener durante el curso y cuyo máximo es

2.

- S la nota del ejercicio de simulación, que sólo se puede obtener durante el curso y cuyo máximo es 0,5.
- T la nota del trabajo avanzado, que sólo se puede obtener durante el curso y cuyo máximo es 1.
- o la calificación se obtiene en la convocatoria ordinaria como:
 - Si max(E_p,E_o)

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
Página de la asignatura en Moodle	Recursos web	Apuntes, colección de problemas y exámenes, vídeos educativos y programas profesionales de cálculo
Aspen Plus	Otros	Simulador de procesos