PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

53002001 - Eficiencia Energética

PLAN DE ESTUDIOS

05BK - Máster Universitario En Ingeniería De La Energía

CURSO ACADÉMICO Y SEMESTRE

2023/24 - Primer semestre

Índice

Guía de Aprendizaje

UNIVERSIDAD POLITÉCNICA DE MADRID

1. Datos descriptivos	1
2. Profesorado	1
3. Conocimientos previos recomendados	2
4. Competencias y resultados de aprendizaje	3
5. Descripción de la asignatura y temario	
6. Cronograma	6
7. Actividades y criterios de evaluación	9
8. Recursos didácticos	
9. Otra información	20

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	53002001 - Eficiencia Energética
No de créditos	3 ECTS
Carácter	Obligatoria
Curso	Primer curso
Semestre	Primer semestre
Período de impartición	Septiembre-Enero
Idioma de impartición	Castellano
Titulación	05BK - Máster Universitario en Ingeniería de la Energía
Centro responsable de la titulación	05 - Escuela Técnica Superior De Ingenieros Industriales
Curso académico	2023-24

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Daniel Serrano Jimenez	ETSIME- M3-503	daniel.serrano.jimenez@upm .es	M - 08:00 - 10:00 X - 08:00 - 10:00 J - 08:00 - 10:00 Se recomienda contactar previamente con el profesor por email.

Natalia Elizabeth Fonseca Gonzalez (Coordinador/a)	ETSIME- M3-515	natalia.fonseca@upm.es	L - 16:00 - 20:00 J - 13:00 - 14:00 J - 16:00 - 17:00 Se recomienda contactar previamente con el profesor por email.
David Nieto Simavilla	M3-507	david.nsimavilla@upm.es	M - 16:00 - 18:00 X - 12:00 - 14:00 Se recomienda contactar previamente con el profesor por email.

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

El plan de estudios Máster Universitario en Ingeniería de la Energía no tiene definidas asignaturas previas recomendadas para esta asignatura.

3.2. Otros conocimientos previos recomendados para cursar la asignatura

- Utilización de la energía eléctrica o similar
- Máquinas térmicas o similar

4. Competencias y resultados de aprendizaje

4.1. Competencias

- CB8 Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
- CB9 Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
- CE1 Ser capaz de aplicar conocimientos y capacidades a estudiar, analizar y auditar programas de optimización energética en los diferentes sectores industriales, residenciales, domésticos, plantas de potencia y a la industria térmica y de fluidos en general, en los ámbitos de la eficiencia, la diversificación y la reducción de su impacto en el medio ambiente.
- CE18 Entender la optimización de costes en una empresa: coste marginal, coste medio, coste hundido, coste de oportunidad, aplicados al sector de la energía. Analizar costes en el sector de la energía.
- CE2 Analizar y establecer criterios de mejora energética y económica en instalaciones de generación y de consumo, incluyendo el sector transportes, conducente al diseño de alternativas más eficientes y con menor impacto ambiental.
- CG1 Aplicar conocimientos de ciencias y tecnologías avanzadas a la práctica profesional o investigadora de la Ingeniería Energética.
- CG5 Comprender el impacto de la Ingeniería Energética en el medio ambiente, el desarrollo sostenible de la sociedad y la importancia de trabajar en un entorno profesional y responsable.
- CT1 Aplica. Habilidad para aplicar conocimientos científicos, matemáticos y tecnológicos en sistemas relacionados con la práctica de la ingeniería.
- CT10 Conoce. Conocimiento de los temas contemporáneos.
- CT14 Idea. Creatividad.
- CT3 Diseña. Habilidad para diseñar un sistema, componente o proceso que alcance los requisitos deseados teniendo en cuenta restricciones realistas tales como las económicas, medioambientales, sociales, políticas, éticas, de salud y seguridad, de fabricación y de sostenibilidad.

- CT4 Trabaja en equipo. Habilidad para trabajar en equipos multidisciplinares.
- CT5 Resuelve. Habilidad para identificar, formular y resolver problemas de ingeniería.

4.2. Resultados del aprendizaje

- RA215 Calcular los factores de eficiencia energética en edificación, industria y transporte.
- RA216 Identificar los factores que influyen sobre la eficiencia energética en edificación, industria y transporte.
- RA217 Calcular el ahorro (energía final, energía primaria, de gases de efecto invernadero, etc.) debido a la implantación de medidas de mejora de eficiencia energética en edificación, industria y transporte.
- RA214 Conocer el marco normativo internacional sobre eficiencia energética en la edificación, industria y transporte.

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

Objetivos generales de la asignatura

El objetivo de la asignatura es introducir al alumno en los conceptos de eficiencia energética e identificar los factores que influyen en la eficiencia energética en la edificación e industria, así como las correspondientes actuaciones de mejora.

5.2. Temario de la asignatura

- 1. Introducción. Concepto de eficiencia energética y potencial de ahorro. Legislación sobre eficiencia energética con énfasis en el entorno europeo. Energía primaria, energía final y CO2.
- 2. Eficiencia en la edificación
 - 2.1. Factores que influyen sobre la eficiencia térmica: Estimación de la demanda térmica, Consumo de energía final, primaria y emisiones CO2
 - 2.2. Eficiencia energética en instalaciones de iluminación
- 3. Eficiencia en la Industria
 - 3.1. Factores que influyen sobre la eficiencia energética y gestión de la energía térmica en la industria (recuperación de calor, integración de procesos). Evaluación de medidas de mejora de eficiencia energética en industria.
 - 3.2. Cogeneración
 - 3.3. Eficiencia eléctrica en la Industria

6. Cronograma

6.1. Cronograma de la asignatura *

Sem	Actividad en aula	Actividad en laboratorio	Tele-enseñanza	Actividades de evaluación
1	T1 - Introducción. Duración: 02:00 LM: Actividad del tipo Lección Magistral			
2	T1 - Introducción. Duración: 02:00 LM: Actividad del tipo Lección Magistral	T1 Introducción (sólo grupo piloto) Duración: 02:00 AR: Aprendizaje basado en retos		Cuestionario tema 1 (grupo normal de clase) ET: Técnica del tipo Prueba Telemática Evaluación continua y sólo prueba final No presencial Duración: 01:00
3	T2.1 Factores que influyen sobre la eficiencia energética Duración: 01:00 LM: Actividad del tipo Lección Magistral T2.1 Factores que influyen sobre la eficiencia energética Duración: 01:00 PR: Actividad del tipo Clase de Problemas	T2.1 Factores que influyen sobre la eficiencia energética (sólo grupo piloto) Duración: 02:00 AR: Aprendizaje basado en retos		Tarea 1 tema 2.1 (grupo normal de clas TI: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final No presencial Duración: 01:00
4	T2.1 Factores que influyen sobre la eficiencia energética Duración: 01:00 LM: Actividad del tipo Lección Magistral T2.1 Factores que influyen sobre la eficiencia energética Duración: 01:00 LM: Actividad del tipo Lección Magistral	T2.1 Factores que influyen sobre la eficiencia energética (sólo grupo piloto) Duración: 02:00 AR: Aprendizaje basado en retos		
5	T2.1 Factores que influyen sobre la eficiencia energética (simulación programa HULC) Duración: 02:00 PR: Actividad del tipo Clase de Problemas	T2.1 Factores que influyen sobre la eficiencia energética (sólo grupo piloto) Duración: 02:00 AR: Aprendizaje basado en retos		
6	T2.1 Factores que influyen sobre la eficiencia energética (simulación programa HULC) Duración: 02:00 PR: Actividad del tipo Clase de Problemas	T2.1 Factores que influyen sobre la eficiencia energética (sólo grupo piloto) Duración: 02:00 AR: Aprendizaje basado en retos		Tarea HULC (grupo normal de clase) TG: Técnica del tipo Trabajo en Grupo Evaluación continua y sólo prueba final No presencial Duración: 04:00
7	T3.1 Eficiencia térmica en la industria Duración: 01:30 LM: Actividad del tipo Lección Magistral T3.1 Eficiencia térmica en la industria Duración: 00:30 PR: Actividad del tipo Clase de Problemas			Tarea integración de procesos (grupo normal de clase) Tl: Técnica del tipo Trabajo Individual Evaluación continua y sólo prueba final No presencial Duración: 01:00

UNIVERSIDAD POLITÉCNICA DE MADRID

	T3.2 Cogeneración		Tarea CHP1 (grupo normal de clase)
	Duración: 01:30		TI: Técnica del tipo Trabajo Individual
	LM: Actividad del tipo Lección Magistral		Evaluación continua y sólo prueba final
8			No presencial
	T3.2 Cogeneración		Duración: 01:00
	Duración: 01:30		
	LM: Actividad del tipo Lección Magistral		
	T3.2 Cogeneración		Tarea CHP2 (grupo normal de clase)
	Duración: 01:30		TI: Técnica del tipo Trabajo Individual
	LM: Actividad del tipo Lección Magistral		· · ·
	Livi. Actividad dei tipo Leccion iviagistrai		Evaluación continua y sólo prueba final
			No presencial
	T3.2 Cogeneración		Duración: 02:00
9	Duración: 00:30		
	PR: Actividad del tipo Clase de Problemas		Proyecto ABR (sólo grupo piloto RETOS)
			TG: Técnica del tipo Trabajo en Grupo
			Evaluación continua y sólo prueba final
			No presencial
			Duración: 10:00
	T2.2 Eficiencia energética en		
	instalaciones de iluminación		
	Duración: 01:30		
	LM: Actividad del tipo Lección Magistral		
10	, , , , ,		
	T2.2 Eficiencia energética en		
	instalaciones de iluminación		
	Duración: 00:30		
	PR: Actividad del tipo Clase de Problemas		
	T3.3 Eficiencia eléctrica en la industria		
	Duración: 01:30		
	LM: Actividad del tipo Lección Magistral		
l	Livi. Actividad dei tipo Leccion Magistrai		
11	T3.3 Eficiencia eléctrica en la industria		
	Duración: 00:30		
	PR: Actividad del tipo Clase de Problemas		
	· ·		
	T3.3 Eficiencia eléctrica en la industria		
	Duración: 01:30		
	LM: Actividad del tipo Lección Magistral		
12	L		
	T3.3 Eficiencia eléctrica en la industria		
	Duración: 00:30		
	PR: Actividad del tipo Clase de Problemas		
	T3.3 Eficiencia eléctrica en la industria		
	Duración: 01:30		
	LM: Actividad del tipo Lección Magistral		
13			
	T3.3 Eficiencia eléctrica en la industria		
	Duración: 00:30		
	PR: Actividad del tipo Clase de Problemas		
	T3.3 Eficiencia eléctrica en la industria		Caso práctico grupal Eficiencia eléctrica
	Duración: 01:30		en la Industria (todos los alumnos)
	LM: Actividad del tipo Lección Magistral		TG: Técnica del tipo Trabajo en Grupo
14			Evaluación continua y sólo prueba final
''	T3.3 Eficiencia eléctrica en la industria		No presencial
	Duración: 00:30		Duración: 04:00
	PR: Actividad del tipo Clase de Problemas		

UNIVERSIDAD POLITÉCNICA DE MADRID

15		
16		
		Examen final teórico-práctico (grupo
		normal de clase)
		EX: Técnica del tipo Examen Escrito
		Evaluación continua y sólo prueba final
		Presencial
		Duración: 02:00
		Examen final teórico-práctico: Sólo parte
		eléctrica y térmica industria (grupo piloto
		RETOS)
		EX: Técnica del tipo Examen Escrito
		Evaluación continua y sólo prueba final
17		Presencial
		Duración: 01:30
		Examen final teórico-práctico: Sólo parte
		térmica edificación (grupo piloto
		RETOS). Este examen no tiene valor,
		puesto que sólo se hace con fines de
		comparar resultados con alumnos NO
		RETOS)
		EX: Técnica del tipo Examen Escrito
		Evaluación continua y sólo prueba final
		Presencial
		Duración: 00:30

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

^{*} El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación (progresiva)

Sem.	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
2	Cuestionario tema 1 (grupo normal de clase)	ET: Técnica del tipo Prueba Telemática	No Presencial	01:00	5%	/10	CG1 CB9 CT1 CT10 CE2 CE18 CG5 CB8
3	Tarea 1 tema 2.1 (grupo normal de clase)	TI: Técnica del tipo Trabajo Individual	No Presencial	01:00	5%	/10	CG1 CT1 CE2 CE18 CG5 CT5
6	Tarea HULC (grupo normal de clase)	TG: Técnica del tipo Trabajo en Grupo	No Presencial	04:00	12%	/10	CG1 CB9 CT1 CT10 CE2 CE1 CT3 CT14 CG5 CB8 CT4 CT5
7	Tarea integración de procesos (grupo normal de clase)	TI: Técnica del tipo Trabajo Individual	No Presencial	01:00	6%	/10	CG1 CT1 CE2 CE1 CT3 CG5 CT5

8	Tarea CHP1 (grupo normal de clase)	TI: Técnica del tipo Trabajo Individual	No Presencial	01:00	6%	/10	CG1 CT1 CE1 CG5 CT5
9	Tarea CHP2 (grupo normal de clase)	TI: Técnica del tipo Trabajo Individual	No Presencial	02:00	6%	/10	CG1 CB9 CT1 CE2 CE1 CT3 CG5 CB8 CT5
9	Proyecto ABR (sólo grupo piloto RETOS)	TG: Técnica del tipo Trabajo en Grupo	No Presencial	10:00	50%	/10	CT1 CG1 CB9 CT10 CE2 CE1 CT3 CT14 CG5 CB8 CT4 CT5
14	Caso práctico grupal Eficiencia eléctrica en la Industria (todos los alumnos)	TG: Técnica del tipo Trabajo en Grupo	No Presencial	04:00	20%	/10	CG1 CB9 CT1 CT10 CE2 CE18 CE1 CT3 CT14 CG5 CB8 CT4 CT5
17	Examen final teórico-práctico (grupo normal de clase)	EX: Técnica del tipo Examen Escrito	Presencial	02:00	40%	3/10	CG1 CB9 CT1 CT10 CE2 CE1 CT3 CG5 CB8 CT5

17	Examen final teórico-práctico: Sólo parte eléctrica y térmica industria (grupo piloto RETOS)	EX: Técnica del tipo Examen Escrito	Presencial	01:30	30%	3/10	CG1 CB9 CT1 CT10 CE2 CE1 CT3 CG5 CB8 CT5
17	Examen final teórico-práctico: Sólo parte térmica edificación (grupo piloto RETOS). Este examen no tiene valor, puesto que sólo se hace con fines de comparar resultados con alumnos NO RETOS)	EX: Técnica del tipo Examen Escrito	Presencial	00:30	%	/10	CB9 CT1 CT10 CE2 CE1 CT3 CG5 CB8 CT5 CG1

7.1.2. Prueba evaluación global

Sem	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
2	Cuestionario tema 1 (grupo normal de clase)	ET: Técnica del tipo Prueba Telemática	No Presencial	01:00	5%	/10	CG1 CB9 CT1 CT10 CE2 CE18 CG5 CB8
3	Tarea 1 tema 2.1 (grupo normal de clase)	TI: Técnica del tipo Trabajo Individual	No Presencial	01:00	5%	/10	CG1 CT1 CE2 CE18 CG5 CT5
6	Tarea HULC (grupo normal de clase)	TG: Técnica del tipo Trabajo en Grupo	No Presencial	04:00	12%	/10	CG1 CB9 CT1 CT10 CE2 CE1 CT3 CT14 CG5 CB8 CT4 CT5

7	Tarea integración de procesos (grupo normal de clase)	TI: Técnica del tipo Trabajo Individual	No Presencial	01:00	6%	/10	CG1 CT1 CE2 CE1 CT3 CG5 CT5
8	Tarea CHP1 (grupo normal de clase)	TI: Técnica del tipo Trabajo Individual	No Presencial	01:00	6%	/10	CG1 CT1 CE1 CG5 CT5
9	Tarea CHP2 (grupo normal de clase)	TI: Técnica del tipo Trabajo Individual	No Presencial	02:00	6%	/10	CG1 CB9 CT1 CE2 CE1 CT3 CG5 CB8 CT5
9	Proyecto ABR (sólo grupo piloto RETOS)	TG: Técnica del tipo Trabajo en Grupo	No Presencial	10:00	50%	/10	CT1 CG1 CB9 CT10 CE2 CE1 CT3 CT14 CG5 CB8 CT4 CT5
14	Caso práctico grupal Eficiencia eléctrica en la Industria (todos los alumnos)	TG: Técnica del tipo Trabajo en Grupo	No Presencial	04:00	20%	/ 10	CG1 CB9 CT1 CT10 CE2 CE18 CE1 CT3 CT14 CG5 CB8 CT4 CT5
17	Examen final teórico-práctico (grupo normal de clase)	EX: Técnica del tipo Examen Escrito	Presencial	02:00	40%	3/10	CG1 CB9 CT1 CT10 CE2 CE1 CT3

							CG5 CB8 CT5
17	Examen final teórico-práctico: Sólo parte eléctrica y térmica industria (grupo piloto RETOS)	EX: Técnica del tipo Examen Escrito	Presencial	01:30	30%	3/10	CG1 CB9 CT1 CT10 CE2 CE1 CT3 CG5 CB8 CT5
17	Examen final teórico-práctico: Sólo parte térmica edificación (grupo piloto RETOS). Este examen no tiene valor, puesto que sólo se hace con fines de comparar resultados con alumnos NO RETOS)	EX: Técnica del tipo Examen Escrito	Presencial	00:30	%	/10	CB9 CT1 CT10 CE2 CE1 CT3 CG5 CB8 CT5 CG1

7.1.3. Evaluación convocatoria extraordinaria

Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
Resolución de casos prácticos (durante el curso) - Alumnos grupo normal de clase	TI: Técnica del tipo Trabajo Individual	Presencial	02:00	60%	/10	CG1 CB9 CT1 CT10 CE2 CE18 CE1 CT3
						CT14 CG5 CB8 CT4 CT5

UNIVERSIDAD POLITÉCNICA DE MADRID

Examen final teórico-práctico convocatoria extraordinaria - Alumnos grupo normal de clase	EX: Técnica del tipo Examen Escrito	Presencial	02:00	40%	3/10	CG1 CT1 CT10 CE1 CT3 CG5 CB8 CT5
Resolución de casos prácticos (durante el curso - sólo alumnos grupo PILOTO RETOS) - Proyecto RETOS eficiencia energética en edificación (HULC, CYPE): 50% - Caso práctico grupal eficiencia eléctrica: 20%	TG: Técnica del tipo Trabajo en Grupo	Presencial	12:00	70%	/10	CG1 CB9 CT1 CT10 CE2 CE1 CT3 CG5 CB8 CT5
Examen final teórico-práctico - Parte eléctrica y Parte térmica (sólo Industria) - sólo Grupo PILOTO RETOS	EX: Técnica del tipo Examen Escrito	Presencial	02:00	30%	3/10	CG1 CB9 CT1 CT10 CE2 CE1 CT3 CG5 CB8 CT5

7.2. Criterios de evaluación

Para el curso 2023-24 se hará una experiencia piloto dentro de la asignatura en el que se implementará la técnica de aprendizaje Basado en RETOS. Durante el primer día de clase se le presentará a los alumnos la posibilidad de formar parte del grupo piloto para la implementación de esta técnica docente. El grupo piloto será de máximo 20 alumnos, por lo que su admisión será por estricto orden de solicitud. Los alumnos que sean admitidos en el grupo PILOTO RETOS permaneceran en este grupo durante la convocatoria ordinaria y en caso tal, extraordinaria, salvo que soliciten por escrito (justificando la decisión) cambiar al grupo de clase normal. En cuyo caso, deberán ponerse al día de forma autodidácta con el material impartido y con las actividades de evaluación que se hayan hecho en el grupo normal de clase hasta ese momento.

Para el GRUPO PILOTO "RETOS":

- Para las clases de la semana 2 a la semana 6 se desdoblará el grupo, de tal forma que los alumnos del grupo piloto trabajarán, junto con un profesor, en un aula aparte que se habilitará para este fin.
- En la clase de la semana 2 se presentará la metodología que se va a seguir y la idea general. Se plantearán las preguntas esenciales y se planteará el reto, que será presentado por parte de la Empresa SinCO2.
- En las 4 clases sucesivas los alumnos trabajarán en grupos de máximo 5 alumnos con el apoyo del profesor para ir desarrollando el reto. Para cada clase se establecerá un objetivo concreto que los alumnos deben lograr y se evaluará su consecución. La consecución del reto implicará por parte de los alumnos dedicación fuera de las horas de clase.
- En las clases siguientes (a partir de la semana 7) los alumnos del grupo piloto se integrarán en las clases normales (tema eficiencia térmica en la Industria y eficiencia eléctrica). En la parte de "eficiencia térmica en la Industria" los alumnos del grupo piloto no tendrán que hacer los entregables, pues se evaluará este tema exclusivamente en el examen final. En la parte de "Eficiencia eléctrica" será igual para todos los alumnos matriculados en la asignatura.

En resumen, la evaluación progresiva, global y extraordinaria, para los alumnos del grupo PILOTO RETOS, será:

Descripción	Modalidad	Tipo	Duración	Peso	en la	Nota mínima	Compe	etencias
				nota			evalua	das
Resolución de	TI: Técnica	No presencial	10:00	70%		4/10	CT1	CT10

1	i	i	1	i	1		1
casos	del ti	ро			(media		CE2 CE1
prácticos	Trabajo				todos	los	CG1 CB9 CT3
(durante el	en grupo				casos		CG5 CB8
curso)					prácticos)		CT5
- Proyecto							
ABR							
eficiencia							
energética en							
edificación							
(HULC,							
CYPE): 50%							
- Caso							
práctico							
grupal							
Eficiencia							
eléctrica en la							
Industria: 20%							
Examen final	EX: Técni	ca Presencial	02:00	30%	3/10		CT1 CT10
teórico-	del ti	ро					CE2 CE1
práctico	Examen						CG1 CB9 CT3
- Parte	Escrito						CG5 CB8 CT5
eléctrica							
- Parte							
térmica (sólo							
Industria)							

teniendo en cuenta que en la evaluación global de la convocatoria ordinaria y extraordinaria, los casos prácticos son los mismos que para la evaluación progresiva, pero en este caso los alumnos los deben resolver individualmente y tienen de plazo de entrega la fecha del examen final de la convocatoria ordinaria o extraordinaria, según sea el caso.

RESOLUCION TRABAJO EN GRUPO (Proyecto ABR):

Esta actividad estará basada en los principios de Aprendizaje Basado en Retos (ABR). La empresa SINCEO2 INGENIERIA ENERGÉTICA S.L. proporcionará los datos necesarios para la resolución de la certificación energética de edificios reales. Los alumnos aprenderán a utilizar herramientas de simulación energética (HULC o

CYPEtherm HE) para la optimización de la eficiencia energética y la resolución de la certificación energética. La evaluación global es igual a la evaluación progresiva, dado que los casos prácticos no son evaluables por medio de un examen.

EXAMEN TEÓRICO PRÁCTICO: En el examen final, para los alumnos del grupo piloto, se evaluará sólo la Parte eléctrica y Parte térmica (sólo Industria). El examen incluirá una parte teórica y una parte práctica (problemas). La parte teórica podría incluir preguntas de tipo test y/o preguntas abiertas, que deben ser bien contestadas y razonadas. En la parte de problemas, se valorará tanto la resolución del problema como el resultado numérico correcto, por lo tanto, es imprescindible presentar el procedimiento de resolución.

Para el GRUPO NORMAL DE CLASE:

En resumen, la evaluación progresiva, global y extraordinaria, para los alumnos del grupo de clase normal, será:

Descripción	Modalidad	Tipo	Duración	Peso en la	Nota mínima	Competencias
				nota		evaluadas
Resolución de	TI: Técnica	No presencial	10:00	60%	5 / 10	CT1 CT10
casos	del tipo				(media de	CE2 CE1
prácticos:	Trabajo				todos los	CG1 CB9 CT3
cuestionarios,	Individual o				casos	CG5 CB8
tareas, etc	grupal				prácticos)	CT5
(durante el						
curso)						
Examen final	EX: Técnica	Presencial	02:00	40%	3 / 10	CT1 CT10
teórico-	del tipo					CE2 CE1
práctico	Examen					CG1 CB9 CT3
	Escrito					CG5 CB8 CT5

teniendo en cuenta que en la evaluación global de la convocatoria ordinaria y extraordinaria, los casos prácticos son los mismos que para la evaluación progresiva, pero en este caso los alumnos los deben resolver individualmente y tienen de plazo de entrega la fecha del examen final de la convocatoria ordinaria o extraordinaria, según sea el caso.

RESOLUCIÓN DE CASOS PRÁCTICOS Y CUESTIONARIOS (CP):

Los trabajos o resolución de cuestionarios se harán de forma individual o en grupo, según se especifique en cada caso. Estos casos y/o cuestionarios deberán ser resueltos en las fechas establecidas a lo largo del semestre. La evaluación global es igual a la evaluación progresiva, dado que los casos prácticos no son evaluables por medio de un examen.

EXAMEN TEÓRICO-PRÁCTICO (Ex):

El examen incluirá una parte teórica y una parte práctica (problemas). La parte teórica podría incluir preguntas de tipo test y/o preguntas abiertas, que deben ser bien contestadas y razonadas. En la parte de problemas, se valorará tanto la resolución del problema como el resultado numérico correcto, por lo tanto, es imprescindible presentar el procedimiento de resolución. En el examen entra todos los temas estudiados.

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
Guías Técnicas sobre eficiencia		
energética del Fenercom.	Bibliografía	
www.fenercom.com		
Guías Técnicas de eficiencia		
energética en iluminación. (4 guías).	 Bibliografía	
Ed. IDAE y Comité Español de	Bibliografia	
iluminación. (2001-2019)		
Capehart, B.L., Keneddy, W.K. y		
Turner, W.C. Guide to Energy		
Management ? International version.	Bibliografía	
The Fairmont Press, Inc. (8ª Edición,		
2016)		

Desideri, U; Asdrubali, F. Handbook of Energy Efficiency in Buildings: a Life Cycle Approach. Ed. Elsevier. (1 ^a Edición, 2018)	Bibliografía	
Villa Arroyo, F (Coord.). El libro blanco de la iluminación. (vol. 1 ? 7) Ed. Comité Español de iluminación (2013)	Bibliografía	
García Garrido, S. y Fraile Chico, D. Cogeneración: diseño, operación y mantenimiento de plantas de cogeneración. Ed. Días de Santos, 2008.	Bibliografía	
Kemp, Ian C., Pinch Analysis and Process Integration. A User Guide on Process Integration for Efficient Use of Energy. Second Edition, 2007, Elsevier Ltd	Bibliografía	
Manual de AIRE ACONDICIONADO Carrier. Editorial Marcombo 2009	Bibliografía	
Dossat R. J., Principles of refrigeration. Prentice Hall	Bibliografía	
Kreith F., Goswami D.Y., Handbook of Energy Efficiency and Renowable Energy. CRC Press	Bibliografía	
Plataforma educativa Moodle (UPM), asignatura "Eficiencia energética"	Recursos web	Entre el posible contenido de este recurso web cabe contar con: apuntes propios de temas de la asignatura; presentaciones y archivos que use o desarrolle el profesor en clase.

9. Otra información

UNIVERSIDAD POLITÉCNICA DE MADRID

9.1. Otra información sobre la asignatura

Esta asignatura se relaciona con el ODS7