PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001

ASIGNATURA

593000304 - Control De Ruido Y Vibraciones

PLAN DE ESTUDIOS

59AE - Master Universitario En Ingenieria Acustica

CURSO ACADÉMICO Y SEMESTRE

2023/24 - Primer semestre

Índice

Guía de Aprendizaje

1. Datos descriptivos	1
2. Profesorado	1
3. Conocimientos previos recomendados	
4. Competencias y resultados de aprendizaje	2
5. Descripción de la asignatura y temario	4
6. Cronograma	5
7. Actividades y criterios de evaluación	7
8. Recursos didácticos	9
9. Otra información	10

1. Datos descriptivos

1.1. Datos de la asignatura

Nombre de la asignatura	593000304 - Control de Ruido y Vibraciones
No de créditos	4.5 ECTS
Carácter	Obligatoria
Curso	Primer curso
Semestre	Primer semestre
Período de impartición	Septiembre-Enero
Idioma de impartición	Castellano
Titulación	59AE - Master Universitario en Ingenieria Acustica
Centro responsable de la	59 - Escuela Tecnica Superior De Ingenieria Y Sistemas De
titulación	Telecomunicacion
Curso académico	2023-24

2. Profesorado

2.1. Profesorado implicado en la docencia

Nombre	Despacho	Correo electrónico	Horario de tutorías *
Eduardo Latorre Iglesias (Coordinador/a)	8202	eduardo.latorre.iglesias@up m.es	Sin horario.
Juan Manuel Muñoz Guijosa		juanmanuel.munoz.guijosa@ upm.es	Sin horario.

^{*} Las horas de tutoría son orientativas y pueden sufrir modificaciones. Se deberá confirmar los horarios de tutorías con el profesorado.

2.3. Profesorado externo

Nombre	Correo electrónico	Centro de procedencia
Teresa Bravo	teresa.bravo@csic.es	CSIC

3. Conocimientos previos recomendados

3.1. Asignaturas previas que se recomienda haber cursado

- Ingenieria Acustica

3.2. Otros conocimientos previos recomendados para cursar la asignatura

- Conocimientos de fundamentos de acústica física

4. Competencias y resultados de aprendizaje

4.1. Competencias

- CB09 Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
- CB10 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- CE02 Comprensión y dominio de la legislación y normativa nacional e internacional y su aplicación para la resolución de problemas propios de la ingeniería acústica.
- CE05 Capacidad para comprender y utilizar los principios de acústica aplicada para el diseño industrial, ambiental y/o arquitectónico de equipos, instalaciones y/o recintos y su aplicación para la resolución de los problemas propios de la ingeniería acústica.
- CG01 Conocer y aplicar conocimientos y soluciones de ingeniería acústica a los campos de la industria, la edificación, el transporte y el medio ambiente, entre otros.

- CG05 Preparar al alumno para la toma de decisiones y la emisión de juicios ante el estudio de casos reales presentados por el profesorado en la forma práctica, científica y profesional.
- CG06 Comunicar correcta y adecuadamente las conclusiones obtenidas mediante la exposición del análisis de casos prácticos
- CG10 Estimular la profesionalización investigadora de los alumnos, incorporando como parte de su formación, el aprendizaje de metodologías, habilidades y competencias actualmente demandadas por las empresas e instituciones de I+D+i del sector de la ingeniería acústica.

4.2. Resultados del aprendizaje

- RA76 Conocer los fundamentos del control activo de ruido.
- RA74 Conocer los fundamentos del control pasivo del ruido.
- RA68 Comprender los mecanismos básicos de radiación acústica.
- RA77 Diseñar sistemas de control pasivo y activo de ruido
- RA67 Conocer y saber emplear la instrumentación para la medición del ruido.
- RA65 Conocer las diferentes fuentes de ruido
- RA69 Conocer las características del ruido aerodinámico
- RA70 Calcular la eficacia de radiación de una placa vibrante
- RA71 Entender los principios de aislamiento de vibraciones.
- RA72 Evaluar y medir la transmisibilidad de sistemas idealizados en el laboratorio

5. Descripción de la asignatura y temario

5.1. Descripción de la asignatura

El objetivo de la asignatura es dotar de herramientas al alumno para identificar, valorar y encontrar soluciones a problemas de ruido y vibraciones que se pueden encontrar comúnmente en la aplicaciones industriales y de transporte. Para ello se verán los fundamentos sobre generación de ruido y fuentes de ruido, se aprenderá cómo caracterizar dichas fuentes, se verán estrategias para el control activo y pasivo de ruido, se profundizará en los mecanismos de generación de ruido debido a estructuras vibrantes (vibroacústica) o a flujo de aire (aeroacústica) y se verán también mecanismos para el control de vibraciones. La asignatura compagina enseñanzas teóricas con prácticas de laboratorio donde se pondrán en práctica dichas enseñanzas y trabajos con marcada aplicación práctica.

5.2. Temario de la asignatura

- 1. Introducción. Fuentes de ruido.
- 2. Medidas de potencia sonora.
- 3. Radiación sonora de estructuras vibrantes.
- 4. Ruido aerodinámico.
- 5. Control activo de ruido.
- 6. Control pasivo de ruido.
- 7. Control de vibraciones.

6. Cronograma

6.1. Cronograma de la asignatura *

Sem	Actividad en aula	Actividad en laboratorio	Tele-enseñanza	Actividades de evaluación
1	Introducción Duración: 01:00 LM: Actividad del tipo Lección Magistral Tema 1. Fuentes de ruido. Duración: 03:00 LM: Actividad del tipo Lección Magistral	Tema 2. Medidas de potencia sonora. Preparación de la práctica del potencia sonora. Duración: 02:00 LM: Actividad del tipo Lección Magistral		
2	Tema 3. Radiación sonora de estructuras. Duración: 03:00 LM: Actividad del tipo Lección Magistral	Laboratorio 1. Medidas de potencia acústica (parte 1) Duración: 03:00 PL: Actividad del tipo Prácticas de Laboratorio		
3	Tema 4. Ruido Aerodinámico. Duración: 03:00 LM: Actividad del tipo Lección Magistral	Laboratorio 2. Radiación sonora de estructuras. Duración: 03:00 PL: Actividad del tipo Prácticas de Laboratorio		Entrega del informe del laboratorio 1: Medidas de potencia sonora. TI: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 08:00
4	Tema 5. Control pasivo de ruido. Duración: 03:00 LM: Actividad del tipo Lección Magistral	Tema 5 y 7. Control pasivo de ruido y vibraciones Duración: 03:00 LM: Actividad del tipo Lección Magistral		Entrega del Laboratorio 2. Radiación sonora de estructuras. TI: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 08:00
5	Tema 6. Control activo de ruido (parte 1). Duración: 03:00 LM: Actividad del tipo Lección Magistral	Laboratorio 3. Control activo de ruido (parte 1). Duración: 03:00 PL: Actividad del tipo Prácticas de Laboratorio		
6	Tema 6. Control activo de ruido (parte 2). Duración: 03:00 LM: Actividad del tipo Lección Magistral	Laboratorio 3. Control activo de ruido (parte 2). Duración: 03:00 PL: Actividad del tipo Prácticas de Laboratorio		Entrega del informe del laboratorio 3: Control activo de ruido (parte 1). Tl: Técnica del tipo Trabajo Individual Evaluación continua Presencial Duración: 05:00
7	Tema 7. Control de vibraciones. Duración: 03:00 LM: Actividad del tipo Lección Magistral	Laboratorio 5. Control de vibraciones. Duración: 03:00 PL: Actividad del tipo Prácticas de Laboratorio		Entrega del informe del laboratorio 3: Control activo de ruido (parte 2). TI: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 05:00
8				Entrega del informe de la práctica de control de vibraciones. Tl: Técnica del tipo Trabajo Individual Evaluación continua No presencial Duración: 08:00

		Examen final de la asignatura.
		EX: Técnica del tipo Examen Escrito
		Evaluación sólo prueba final
		Presencial
		Duración: 02:00
9		
		Entrega final
		TI: Técnica del tipo Trabajo Individual
		Evaluación continua
		Presencial
		Duración: 08:00
10		
11		
12		
13		
14		
15		
16		
17		

Para el cálculo de los valores totales, se estima que por cada crédito ECTS el alumno dedicará dependiendo del plan de estudios, entre 26 y 27 horas de trabajo presencial y no presencial.

^{*} El cronograma sigue una planificación teórica de la asignatura y puede sufrir modificaciones durante el curso derivadas de la situación creada por la COVID-19.

7. Actividades y criterios de evaluación

7.1. Actividades de evaluación de la asignatura

7.1.1. Evaluación (progresiva)

Sem.	Descripción	Modalidad	Tipo	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
3	Entrega del informe del laboratorio 1: Medidas de potencia sonora.	TI: Técnica del tipo Trabajo Individual	No Presencial	08:00	20%	4/10	CE02 CG01 CG10 CE05
4	Entrega del Laboratorio 2. Radiación sonora de estructuras.	TI: Técnica del tipo Trabajo Individual	No Presencial	08:00	15%	4/10	CG01 CG10 CE05
6	Entrega del informe del laboratorio 3: Control activo de ruido (parte 1).	TI: Técnica del tipo Trabajo Individual	Presencial	05:00	10%	4/10	CG01 CG10 CE05
7	Entrega del informe del laboratorio 3: Control activo de ruido (parte 2).	TI: Técnica del tipo Trabajo Individual	No Presencial	05:00	10%	4/10	CG01 CG10 CE05
8	Entrega del informe de la práctica de control de vibraciones.	TI: Técnica del tipo Trabajo Individual	No Presencial	08:00	15%	4/10	CG05 CB10 CE05
9	Entrega final	TI: Técnica del tipo Trabajo Individual	Presencial	08:00	30%	4/10	CG06 CB09 CE02 CG05 CB10 CG10

7.1.2. Prueba evaluación global

Sem	Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
	9 Examen final de la asignatura. EX: Técnica del tipo Examen Escrito Examen Escrito						CG06
							CB09
		EX: Técnica					CE02
		del tipo	Dragonaial	00.00	4000/	5/40	CG05
l a		Presencial	cial 02:00 100	100%	5/10	CG01	
		Escrito	scrito				CB10
							CG10
							CE05

7.1.3. Evaluación convocatoria extraordinaria

Descripción	Modalidad	Тіро	Duración	Peso en la nota	Nota mínima	Competencias evaluadas
						CG06
Examen final de convocatoria extraordinaria.	EX: Técnica del tipo Examen Escrito	Presencial	02:00	100%	5/10	CB09
						CE02
						CG05
						CG01
						CB10
						CG10
						CE05

7.2. Criterios de evaluación

Evaluación progresiva: la asistencia a las actividades de laboratorio es obligatoria, así como la entrega de las memorias de los informes de prácticas, casos prácticos y la participación en las actividades propuestas. En caso de no asistencia a una actividad presencial obligatoria u omisión en la entrega de los informes obligatorios sin causa justificada dicha actividad de evaluación se calificará con 0 puntos. Las informes se calificarán sobre 10 puntos y deberán de ser entregados en el plazo indicado. En caso de demora sin causa justificada se aplicarán las siguientes penalizaciones:

- retraso de 1 día, penalización de 1 punto,
- retraso de 2 días, penalización de 2 puntos,
- retraso de 3 días, penalización de 3 puntos,
- retraso de 4 días, penalización de 4 puntos,
- retraso de 5 días, penalización de 5 puntos,
- retraso superior a 5 días, la nota será de 0 puntos.

Si se opta por la evaluación final en lugar de evaluación progresiva, se realizará un examen en el que la nota mínima para aprobar la asignatura será de 5 sobre 10. En el examen se evaluarán conocimientos sobre el temario del curso y sobre lo enseñado en las actividades de laboratorio.

La nota mínima en el examen para poder aprobar la asignatura, tanto en convocatoria ordinaria como en convocatoria extraordinaria será de 5 sobre 10.

8. Recursos didácticos

8.1. Recursos didácticos de la asignatura

Nombre	Tipo	Observaciones
SYMPHONIE 01 dB	Equipamiento	Sonómetro analizador de espectro de doble canal.
ANALIZADOR SVANTEK	Equipamiento	Analizador de vibraciones
Calibrador Cal 01 dB	Equipamiento	Calibrador de nivel de presión sonora
Calibrador B&K	Equipamiento	Calibrador de vibraciones
Sonda de intensidad P-U de Microflown	Equipamiento	Sonda de intensidad para medidas de radiación sonora
Fuente de referencia B&K	Equipamiento	Fuente de referencia para medida de potencia
Sistema de adquisición de señal Pulse de B&K	Equipamiento	Para su uso en los laboratorios.
Acelerómetro PCB	Equipamiento	Para su uso en los laboratorios.
L. Beraneck	Bibliografía	Noise and vibration control engineering
F. Fahy, P.Gadiano	Bibliografía	Sound and Structural Vibration
M. Croker	Bibliografía	Handbook of Noise and Vibration Control
M.L. Munjal	Bibliografía	Acoustics of ducts and mufflres
D. Bies, C. Hansen	Bibliografía	Engineering Noise Control
Nelson And Elliot	Bibliografía	Active Control of Sound
Micrófonos de condensador	Equipamiento	Para su uso en los laboratorios.

9. Otra información

9.1. Otra información sobre la asignatura

La comunicación con los alumnos se realizará en primera instancia a través del correo electrónico institucional. El profesor contestará a la consulta o solicitud formulada.

Para las clases "online" y las teleconferencias (si las hubiese) se utilizará, preferentemente la aplicación Microsoft Teams. Para el acceso a los contenidos de la asignatura (diapositivas, documentos de apoyo, etc.) se utilizará la plataforma Moodle.

En caso de utilizar alguna otra aplicación o plataforma, el profesor lo comunicará con tiempo suficiente.

La asignatura se relaciona con el ODS11:

Aunque no diseñamos máquinas, sí que medimos el ruido que emiten y las vibraciones que producen en su entorno. Desde este punto de vista, siempre trasladamos la idea de que cuando se diseña con criterio de desarrollo sostenible, los energías residuales son mínimas y el rendimiento de las maquinas o sistemas es el mas alto. Cuando hay desajustes en piezas o elementos circulares deformados suelen producirse vibraciones indeseadas y la maquina es muy ruidosa y el rendimiento menor.

En todos los temas relacionados con el control de ruido en la fuente o el control de las vibraciones, están presentes los objetivos de desarrollo sostenible. Trasladamos la idea de que los productos mejor diseñados y más eficientes, normalmente son menos ruidosos para la misma potencia útil proporcionada. Evidentemente la utilización de maquinaria de diseño óptimo nos hará más limpios y mas competitivos.