Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
CHARACTERIZATION OF VINEYARD\'S CANOPY THROUGH FUZZY CLUSTERING AND SVM OVER COLOR IMAGES
Año:2012
Áreas de investigación
  • Ciencias de la computación y tecnología informática,
  • Automatización en agricultura
Datos
Descripción
Introduction: In recent years several studies have been conducted in order to asses features from the vineyard?s canopies. It is desirable to quantify features such as leaves, vine shoots, trunks and grapes areas, because this information allows, for example, to predict yields and quality, to perform smart sprayings or to determine the vineyard\'s vigor. However, previous researches are aimed at solving one problem at a time, because these kinds of algorithms usually are time consuming and are unfeasible in real time. Material and Methods: In this work we propose an image processing methodology (framework) developed for performance in-field grapes and leaves detection and quantification, based on a seven step methodology: 1) image segmentation through Fuzzy C-Means with Gustafson Kessel (FCM-GK) clustering; 2) obtaining of FCM-GK outputs (centroids) for acting as seeding for K-Means clustering; 3) Identification of the clusters generated by K-Means using a Support Vector Machine (SVM) classifier. 4) Performance of morphological operations over the grapes and leaves clusters in order to fill holes and to eliminate small pixels clusters; 5) Creation of a mosaic image by Scale-Invariant Feature Transform (SIFT) in order to avoid overlapping between images; 6) Calculation of the areas of leaves and grapes and finding of the centroids in the grape bunches; 7) and geo-referentiation of the generated data using a simple KML (Keyhole Markup Language) file. Image data are collected using a color camera fixed to a mobile platform. This platform was developed to give a stabilized surface to guarantee that the images were acquired parallel to de vineyard rows. In this way, the platform avoids the distortion of the images that lead to poor estimation of the areas. Results/Conclusions: Our preliminary results are promissory as shown in Fig. 1, although they still have shown that it is necessary to implement a camera stabilization system to avoid undesired camera movements, and also a parallel processing procedure in order to speed up the mosaicking process.
Internacional
Si
Nombre congreso
3rd CIGR International Conference of Agricultural Engineering (CIGR-AgEng2012)
Tipo de participación
960
Lugar del congreso
Valencia
Revisores
Si
ISBN o ISSN
84-615-9654-4
DOI
http://cigr.ageng2012.org/images/fotosg/tabla_137_
Fecha inicio congreso
09/07/2012
Fecha fin congreso
13/07/2012
Desde la página
1
Hasta la página
6
Título de las actas
proceeding of3rd CIGR International Conference of Agricultural Engineering (CIGR-AgEng2012)
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Christian Correa Farias (UPM)
  • Autor: Constantino Valero Ubierna (UPM)
  • Autor: Pilar Barreiro Elorza (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: LPF-TAGRALIA: Técnicas Avanzadas en Agroalimentación
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)