Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
A comparison of clustering quality indices using outliers and noise
Año:2012
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
Quality indices in clustering are used not only to assess the quality of the partitions but also to determine the number of clusters in the final result. When these indices are evaluated in a case study, real data conditions or different clustering algorithms are seldom taken into account. Here, some of the standard indices used in the literature are compared using more realistic databases that include outliers or noisy dimensions, which is more like a real problem-solving approach. Besides, three different clustering methods are used in an attempt to identify different behaviours. Also, the performance of the quality index-clustering algorithm tandem is compared to random grouping, with the aim of running an additional check. The indices are ranked, and index-based conclusions are drawn for all the scenarios.
Internacional
Si
JCR del ISI
Si
Título de la revista
Intelligent Data Analysis
ISSN
1088-467X
Factor de impacto JCR
0,4
Información de impacto
Datos JCR del año 2010
Volumen
16
DOI
10.3233/IDA-2012-0545
Número de revista
Desde la página
703
Hasta la página
715
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Luis Pelayo Guerra Velasco (UPM)
  • Autor: Victor Robles Forcada (UPM)
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
  • Autor: Pedro Maria Larrañaga Mugica (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: COMPUTATIONAL INTELLIGENCE GROUP
  • Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)