Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Regularized logistic regression and multi-objective variable selection for classifying MEG data
Año:2012
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori.
Internacional
Si
JCR del ISI
Si
Título de la revista
Biological Cybernetics
ISSN
0340-1200
Factor de impacto JCR
1,586
Información de impacto
Volumen
106
DOI
Número de revista
6-7
Desde la página
389
Hasta la página
405
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Roberto Santana Hermida (UPM)
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
  • Autor: Pedro Maria Larrañaga Mugica (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: COMPUTATIONAL INTELLIGENCE GROUP
  • Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)