Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Discernment of bee pollen loads using computer vision and one-class classification techniques
Año:2012
Áreas de investigación
  • Clasificación visual
Datos
Descripción
In this paper, we propose a system for authenticating local bee pollen against fraudulent samples using image processing and classification techniques. Our system is based on the colour properties of bee pollen loads and the use of one-class classifiers to reject unknown pollen samples. The latter classification techniques allow us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types. Also presented is a multi-classifier model with an ambiguity discovery process to fuse the output of the one-class classifiers. The method is validated by authenticating Spanish bee pollen types, the overall accuracy of the final system of being 94%. Therefore, the system is able to rapidly reject the non-local pollen samples with inexpensive hardware and without the need to send the product to the laboratory. ? 2012 Elsevier Ltd. All rights reserved.
Internacional
Si
JCR del ISI
Si
Título de la revista
Journal of Food Engineering
ISSN
0260-8774
Factor de impacto JCR
2,414
Información de impacto
Volumen
DOI
Número de revista
Desde la página
50
Hasta la página
59
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Pascual Campoy Cervera (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Computer Vision
  • Centro o Instituto I+D+i: Centro de Automática y Robótica (CAR). Centro Mixto UPM-CSIC
  • Departamento: Automática, Ingeniería Electrónica e Informática Industrial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)