Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Learning conditional linear Gaussian classifiers with probabilistic class labels
Año:2013
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
We study the problem of learning Bayesian classifiers (BC) when the true class label of the training instances is not known, and is substituted by a probability distribution over the class labels for each instance. This scenario can arise, e.g., when a group of experts is asked to individually provide a class label for each instance. We particularize the generalized expectation maximization (GEM) algorithm in (Come et al., 2009, Pattern Recognition 42: 334-348) to learn BCs with different structural complexities: naive Bayes, averaged one-dependence estimators or general conditional linear Gaussian classifiers. An evaluation conducted on eight datasets shows that BCs learned with GEM perform better than those using either the classical Expectation Maximization algorithm or potentially wrong class labels. BCs achieve similar results to the multivariate Gaussian classifier without having to estimate the full covariance matrices.
Internacional
No
Nombre congreso
XV Conferencia de la Asociación Española para la Inteligencia Artificial
Tipo de participación
960
Lugar del congreso
Madrid
Revisores
Si
ISBN o ISSN
978-3-642-40642-3
DOI
10.1007/978-3-642-40643-0_15
Fecha inicio congreso
17/09/2013
Fecha fin congreso
20/09/2013
Desde la página
139
Hasta la página
148
Título de las actas
Advances in Artificial Intelligence, Proceedings of the 15th MultiConference of the Spanish Association for Artificial Intelligence, volume 8109 of Lecture Notes in Computer Science
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Pedro Luis Lopez Cruz (UPM)
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
  • Autor: Pedro Maria Larrañaga Mugica (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: COMPUTATIONAL INTELLIGENCE GROUP
  • Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)