Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Geometric structures modeled on affine hypersurfaces and general- izations of the Einstein Weyl and affine sphere equations
Año:2013
Áreas de investigación
  • Matemáticas
Datos
Descripción
An a?ne hypersurface (AH) structure is a pair comprising a conformal structure and a projective structure such that for any torsion-free connection representing the projective structure the completely trace-free part of the covariant derivative of any metric representing the conformal structure is completely symmetric. AH structures simultaneously generalize Weyl structures and abstract the geometric structure determined on a nondegenerate co-oriented hypersurface in at a?ne space by its second fundamental form together with either the projective structure induced by the a?ne normal or that induced by the conormal Gauss map. I will describe some notions of Einstein equations for AH structures which for Weyl structures specialize to the usual Einstein Weyl equations and such that the AH structure induced on a nondegenerate co-oriented a?ne hypersurface is Einstein if and only if the hypersurface is an a?ne sphere. In particular, by a theorem of Cheng-Yau, a properly convex at projective structure admits a metric with which it generates an Einstein AH structure. There are other examples that arise from neither Weyl structures nor a?ne spheres. I will explain that, although it is much more general than conformal geometry, many of the structures and problems arising in conformal geometry have or should have extensions to the context of AH structures.
Internacional
No
Nombre congreso
Conference on Geometrical Analysis
Tipo de participación
960
Lugar del congreso
Centre de Recerca Matemàtica, Bellaterra, España
Revisores
Si
ISBN o ISSN
DOI
Fecha inicio congreso
01/07/2013
Fecha fin congreso
05/07/2013
Desde la página
Hasta la página
Título de las actas
Research Perspectives CRM Barcelona
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Daniel Jeremy Fox Hornig (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Matemática Aplicada (E.U.I.T. Industrial)
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)